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In this thesis two structural health monitoring methodologies are developed and
implemented. The first methodology uses the Natural Excitation Technique and the
Eigensystem Realization Algorithm to identify the modal parameters of a structure. Then,
a least squares solution of the eigenvalue problem is formulated for the calculation of the
stiffness values. Damage is identified by comparing the stiffness of the undamaged
structure with the damaged structure. Implementation issues are discussed herein. The
method is verified through application of this method to the IASC-ASCE structural health
monitoring benchmark problem.

The second methodology developed herein is based on component transfer functions.
Interstory transfer functions of the structure are calculated using acceleration data.
Damage in the structure is detected by identifying changes in these transfer functions. The
extent of damage is obtained by comparing stiffness values of the damaged and
undamaged structure. Stiffnesses are acquired using a nonlinear optimization technique.
Experimental verification of this technique was performed in the Washington University
Structural Control and Earthquake Engineering Lab. 
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Chapter 1 

Structural Health Monitoring

After a major earthquake, hurricane, or other natural disaster, significant resources are

required for inspecting the structural state of buildings and bridges. The predominant

inspection method is manual, visual inspection. However, visual inspection is often

complicated as structural elements are often covered by non-structural elements like

walls and facades. Detecting damage in structural elements can also be performed using

localized experimental methods such as radiographs, magnetic or ultrasonic methods.

These methods are designed to detect localized damage, requiring that approximate

damage locations be known a priori. Structural health monitoring (SHM) of civil struc-

tures using dynamic properties of structures has received significant recent attention by

researchers.

Structural health monitoring is a new and exciting field. This class of methods are used

to identify damage in structures using specialized sensors and computers. Two different

types of methodologies are available to assess the health of structures, localized and glo-

bal techniques. Localized techniques are used to identify the health of a structural mem-

ber using technology such as X-rays and ultrasound. To use these techniques previous

knowledge of the location of damage and direct access to the structural member are

required. Global techniques use the dynamic characteristics of the structure to identify

damage, its approximate location and its severity, reducing the need for manual inspec-

tion. Global techniques are very attractive to civil engineers because they can be used
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without direct access to the structural members and no previous knowledge of damage

of the structure is needed, reducing the time and cost to assess damage in a structure.

This thesis focuses on global techniques. From this point on the term structural health

monitoring will refer to global techniques to identify damage in structures.

Structural health monitoring techniques can be categorized depending in various ways.

For example, these techniques may be assigned one of 4 different levels based on their

capabilities [34]. Level one techniques determine whether or not damage exists in a

structure. Level two techniques determine the existence of damage, as well as its’ loca-

tion. Level three techniques identify the existence, location and severity of damage.

Level four techniques identify the existence, location and severity of damage, as well as

characterizing the remaining life of the structure. Health monitoring strategies may also

be classified according to the data that they use, the user’s knowledge of the excitation,

or if an identification model is assigned. Table 1-1 describes some of the classes of tech-

niques based on different parameters. 

TABLE 1-1. Classification of Structural Health Monitoring Techniques.

Parameter Classification

Level of identification

Level I: Existence of damage

Level II: Existence of damage and location

Level III: Existence of damage, location and quantification 
of damage

Level IV: Existence of damage, location, quantification 
and life expectation of the structure

Data used
Time domain

Frequency domain

Excitation
Known excitation

Unknown excitation

Identification model
Structural model needed for identification 

No structural model needed for identification 
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Numerous techniques have been applied in the literature for health monitoring of struc-

tures. The report written by Doebling et al [14, 15] provides a thorough literature review

in the field of structural health monitoring to 1996. Several methodologies are described

in the report, including methods that use changes in the natural frequencies, changes in

the mode shapes, measurements of flexibility, probabilistic measures, model-updating

techniques, and neural network approaches. The report also discuss the application of

structural health monitoring techniques to several structures including simple beams,

trusses, plates, shells, frames, bridges, offshore platforms, and other civil and aerospace

structures. Other overview papers on structural health monitoring techniques are pro-

vided by Ghanem and Shinozuka [20], Shinozuka and Ghanem [38], and Salawu [35]. 

The following sections provide a literature review of the most relevant techniques for

this thesis. First, the background of the Natural Excitation Technique is discussed. Then,

papers on the development and implementation of the Eigensystem Realization Algo-

rithm are presented. Finally the IASC-ASCE Benchmark Problem in Structural Health

Monitoring and some preliminary results from various researchers is provided. 

1.1  Natural Excitation Technique

Structural health monitoring and system identification techniques have been applied to a

variety of structures such as airplanes, space shuttles and offshore oil platforms. Civil

structures are a special subset of the systems on which these methodologies are applied.

Unlike certain other systems, full-scale civil engineering structures can not easily be

tested in a laboratory environment. Additionally, during on-site testing of full scale

structures the excitation forces are difficult, if not possible, to measure. Using probabi-

listic approaches and signal processing techniques, researchers have been able to

develop methodologies that are capable of identifying modal parameters (frequencies

and mode shapes) of civil structures when the excitation is unknown. An example of

such methodologies is the Natural Excitation Technique (NExT) developed by James et
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al [21,22,23]. NExT is based on the fact that the cross correlation function of the accel-

eration responses and a reference acceleration signal satisfies the homogeneous differen-

tial equation of motion. Using this technique it is possible to obtain correlation

functions, from responses to an unknown excitation, which may be treated as free vibra-

tion data. The unknown excitation should be broadband and stationary. 

In 1993, James et al [21] used the technique for modal analysis of various structures.

First, an analytical model of the DOE/Sandia vertical axis wind turbine was analyzed.

This 34 meter testbed is located in Bushland, Texas, and is used to produce electricity by

capturing the energy of the wind. The natural frequencies and damping ratios used to

develop the analytical model were compared with the results obtained from NExT. The

modal parameters obtained from NExT were in good agreement with the model parame-

ters, demonstrating the capabilities of NExT. The method was also used to obtain modal

parameters from the real turbine when the device was rotating. In addition to the analy-

sis of the DOE/Sandia vertical axis wind turbine, modal analysis was also performed on

a 19 meter FloWind Corporation vertical wind turbine. Accelerometers were used to col-

lect data from the parked (not rotating) turbine. The results were compared with a recent

modal testing and resulted in good agreement between the two tests. NExT was also

used to test a tractor trailer vehicle. The method was used to extract modal parameters

using acceleration data, obtaining the natural frequencies and damping frequencies of

the system. A complete report of these tests and a description of NExT is discussed in

references [22] and [23].

Farrar and James [18, 19] used NExT for modal analysis of the I-40 highway bridge

over the Rio Grande river. Twenty six accelerometers were used to measure the vertical

accelerations on a portion of the west bound bridge. The first six vertical natural fre-

quencies of the bridge were obtained with NExT using ambient vibration induced by

traffic. The natural frequencies and mode shapes were compared with the results

obtained from a forced vibration test using a hydraulic shaker. The ratio between the
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NExT results and the forced vibration test were as low as 0.901 for the first six natural

frequencies, showing the capabilities of NExT for civil structures. A more detailed anal-

ysis of the bridge can be found in reference [18].

Beck et al [2] obtained the natural frequencies of the Robert A. Millikan Library at the

California Institute of Technology using NExT and MODE-ID. NExT was used to

obtain response data for the structure from ambient vibration data, and MODE-ID was

used to estimate the modal parameters from the response data. In the first part of the

paper the methods are used to identify the natural frequencies, mode shapes and damp-

ing ratios of a numerical model of the 6 story shear building. Base excitation was used in

the numerical simulations. The modal parameters identified were in agreement with the

modal parameters of the mathematical model. In the second part of the paper the results

of the ambient vibration test made to 9 story Millikan Library are discussed. Velocity

sensors were used. In the paper the first translational natural frequency in each direction

(East-West and North-South) and the first torsional frequencies were found. These test

were performed for data obtained as early as 1967 and as late as 1994 showing the

changes of the natural frequencies of the structure over this time period.

1.2  Eigensystem Realization Algorithm

The Eigensystem Realization Algorithm (ERA) was developed by Juang and Pappa

[24]. This algorithm uses impulse response functions to obtain modal properties of

multi-input multi-output (MIMO) systems. The algorithm may also be applied using

free response data. Following a rigorous justification of the method the implementation

of ERA to the identification of the modal parameters of the Galileo spacecraft is dis-

cussed. One hundred and sixty two accelerometers were used as input data to the

method. Thirty four natural frequencies, mode shapes and damping ratios were obtained

from the tests.
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Juang and Pappa investigated the effect of noise on results obtained using the ERA in

reference [25]. In this paper the authors used simulated data to show that noise in the

data has a stronger effect in the higher modes than in the lower modes. Improvements in

the identification process can be achieved by using model reduction. The authors also

proposed a method to detect the correct singular value cutoff based on the distribution of

the identifying natural frequencies in a set of different data. 

The results of three large space structures identified using the ERA are shown in refer-

ence [31]. The results obtained in the Galileo spacecraft are discussed as well as the

results obtained from a solar array and a space erectable truss model. The solar array had

many natural frequencies below 1 Hz, testing the capabilities of ERA for long period

structures with high modal density. This system was clearly identified as a nonlinear

structure because the natural frequencies changed at different points of the free decay. In

all three cases the ERA was able to successfully identify the natural frequencies of the

structures.

Currently a bridge in Colombia, South America is being instrumented by the Univer-

sidad del Valle (see Fig. 1-1) [39,8]. Researchers will use the ERA and NeXT to identify

FIGURE 1-1. Hormiguero Bridge

Courtesy Prof. Peter Thomson and Johannio Marulanda C.
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the natural frequencies of the structure using acceleration data. A telemetry system will

be used to transmit the acceleration data from the bridge to the Universidad del Valle

using FM waves. Figure 1-2 shows a flow chart of the telemetry system used. Initial

measurements with a portable system showed the efficacy of the structural health moni-

toring techniques by identifying the primary natural frequencies of the bridge [8]. The

experience gained in this bridge will be used in the implementation of a structural health

monitoring technique of the cable stay bridge located between Pereira and Dos Quebra-

das in Colombia, South America [39].

1.3  Benchmark Problem

The recent technological advances in sensors and computers has led to an interest in

structural health monitoring techniques. These techniques have been applied to many

structures in various environments, making it difficult to compare the advantages and

FIGURE 1-2. Diagram of the Monitoring System.
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disadvantages of each technique. To compare and contrast the pros and cons of these

techniques, a task group of the dynamics committee of the American Society of Civil

Engineers (ASCE) joined with the International Association for Structural Control

(IASC) to develop a benchmark problem in structural health monitoring <http://wus-

ceel.cive.wustl.edu/asce.shm> [26]. 

The first phase of the benchmark is based on analytical models of a 4 story steel building

located at the University of British Columbia, Canada [5]. Two finite element models of

the structure were developed [26]. Several excitation cases and damage patterns were

defined to be solved for the researchers participants in the problem. The second phase of

the benchmark problem is based on experimental results obtained from the real struc-

ture. The problem definition is currently under development [17]. 

Several groups of researchers have been working on phase I of the benchmark problem

(simulated data). A special session about the problem was held at the 14th ASCE Engi-

neering Mechanics Conference in 2000 and at the Joint ASME-ASCE Mechanics and

Materials Conference in 2001. A special issue in the Journal of Engineering Mechanics

is being prepared on this problem. The following paragraphs describe the work to-date

on this problem. 

Au et al [1] applied a two stage technique to solve the problem. First, NExT was used to

obtain the modal properties of the system. Then, the physical parameters of the structure

(mass and stiffness) were obtained using a Bayesian statistical approach to update a

finite element model. Probability density functions (PDF) of the stiffness of the structure

are obtained. Comparing the PDF of the stuffiness system before and after damage it is

possible to detect damage, its location and the severity in a probabilistic manner.

Katafygiotis et al [27] used a statistical modal updating methodology to solve the prob-

lem. The authors used a Bayesian methodology to obtain the PDF of the modal
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parameters of the structure based on the time domain data. The optimal modal properties

are obtained by maximizing the PDF. Then, the process is repeated to obtain the PDF of

the physical properties of the structure to reproduce the modal parameters detected. 

Bernal and Gunes [4] also solved the problem using a three-step methodology. In the

first step the modal characteristics were identified. When the excitation input was avail-

able, an ERA with a Kalman observer was used. When the excitation input is not avail-

able, the subspace identification algorithm was utilized. The second step identifies the

location of damage based on the identified flexibility matrix of the structure. The third

step is performed for quantification of the damage. In this model a modal updating

methodology is used to quantify the stiffness of each floor of the structure. Damage is

quantified by comparing the undamaged with the damaged case. 

Corbin et al [12] solved the benchmark problem using a wavelet approach. The authors

generated a special set of data which spans the point in time at which damage occurs.

Using their approach the authors were able to detect when damage occurs by searching

for spikes in a wavelet decomposition of the acceleration data. Looking at the distribu-

tion of the spikes over the time for the different acceleration measurements the location

of damage can be obtained. This paper did not address the quantification of damage. 

Dyke et al [16] used a combination of NExT and ERA to detect damage in the structure.

This thesis contains a greatly expanded version of this study and further details are not

provided at this point. 

1.4  Overview

In this thesis two health monitoring strategies will be developed and verified. The first

structural health monitoring technique is developed by utilizing the Natural Excitation

Technique and the Eigensystem Realization Algorithm in conjunction with a new
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formulation of the least squares solution to the eigenvalue problem. This method is fur-

ther examined to understand its capabilities and limitations with respect to noise and

modeling errors. The second methodology is a new technique developed based on the

component transfer functions of the structure. Experimental verification of this tech-

nique is performed.

Chapter 2 is dedicated to a description of NExT, ERA and the new formulation of the

least square solution of the eigenvalue problem. The chapter begins with a brief intro-

duction to stochastic processes and their properties. The spectral density function and

correlation function for stationary processes are discussed, followed by a definition of

the limit and derivative of stochastic processes in the mean square sense. In the next sec-

tion NExT is developed using the concepts of stochastic processes discussed earlier. The

ERA methodology is discussed in the following section. The chapter ends with the

development of the least square solution of the eigenvalue problem. This section pro-

vides a new formulation of the problem used to estimate stiffness values of a structure

based on measurements of natural frequencies and mode shapes. 

Chapter 3 presents the results of a study of the implementation the first structural health

monitoring technique. In this chapter a series of studies are done to study the sensitivity

of this technique to various parameters. These studies are developed using the finite ele-

ment model of the IASC-ASCE structural health monitoring benchmark problem. In the

first part of this chapter a description of the finite element models and simulation pro-

grams used to generate the acceleration records is provided. In the following sections the

different studies are presented. The first study discussed how the number of points in the

calculation of the spectral density function affect the natural frequencies, mode shapes,

damping ratios and stiffness values identified by the methodology. The second study

tests of the results of this method are dependent on the value of the natural frequency as

compared to the spectral lines. The effect of noise in the sensors is studied in the follow-

ing section. The last study considers the effect of modeling errors. These errors are due
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to the difference in the number of degrees of freedom in the identification model and the

model representing the real structure. 

To verify the technique, the methodology is applied to the IASC-ASCE benchmark

problem and is presented in chapter 4. In the first part of this chapter a description of the

damage patterns and identification cases is given. Then, the results obtained for each

identification case are discussed. 

The Component Transfer Function Technique is developed in Chapter 5. First the back-

ground of this technique is discussed. Then, to experimentally verify the technique, an

experiment is performed in the Washington University Structural Control and Earth-

quake Engineering Lab. A four story structure was tested on the shake table. Damage is

simulated by removing columns. 

Chapter 6 discusses the conclusions of the research and provides some possibilities for

future studies. 
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Chapter 2 

Background

This chapter provides background information relevant to the structural health monitor-

ing techniques used in this thesis to detect damage in structures. The methodology

developed herein is categorized as level III (identification of the existence, location, and

extent of damage). This approach does not require knowledge of the forces exciting the

structure. Thus, it is applicable for structures experiencing ambient vibration. Previous

knowledge of the mass of the structure is needed to identify stiffness coefficients. 

Before discussing the methodology in detail, it is necessary to develop some concepts in

stochastic processes. The first section of this chapter provides some background in sto-

chastic processes, their statistical characteristics, and calculus in the mean square sense.

These sections provide the necessary background for the subsequent discussion of the

Natural Excitation Technique (NeXT) in section 2.2. NeXT is a tool that allows us to

obtain crosscorrelation functions from ambient vibration records. Section 2.3 describes

the Eigensystem Realization Algorithm (ERA), used to identify modal characteristics.

The identification of structural parameters from modal characteristics is achieved

through a least-squares optimization, which is discussed in section 2.4. 

2.1  Stochastic processes

Data can be classified as deterministic or random. A dynamic process whose value at

any point in time is not random is called deterministic. An example of deterministic data
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is the  displacement of a structure subjected to a known input and initial conditions. This

displacement can be calculated as the solution of the differential equation 

, (2-1)

where  is the stiffness matrix,  the damping matrix,  the mass matrix,  the

forcing vector, and  denotes displacement. The operator  indicates the derivative

with respect to time. Knowing the mass, damping, and stiffness of the structure, it is pos-

sible to obtain the displacements, velocities and accelerations of the structure at every

time  for a specified set of initial conditions.

Processes that have a random value at each point in time are called random, or stochas-

tic. Forces applied to a structure due to ambient vibrations like traffic loads in a bridge

or wind forces in a tall structure are modeled as random. One possible realization of a

random process is called a sample function. The set of all possible sample functions

obtained from a random process is called an ensemble, as shown in Fig. 2-1. Random

processes are described in terms of probabilistic expressions. 
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Stochastic processes are an important tool in the field of system identification and health

monitoring of civil structures. The classification of stochastic processes and their basic

properties are discussed in next sections. For further details regarding stochastic pro-

cesses, see Lutes and Sarkani [28], Bendat and Piersol [3], and Papoulis [30].

2.1.1  Classification of stochastic processes

Stochastic processes can be classified as either stationary or non-stationary. Stationary

random processes have constant statistical properties over time. For example, for the

random process, , two important statistical properties are the mean, , and the

auto-correlation function, ,  which are defined as 

, (2-2)

. (2-3)

When the mean  of a stochastic process is constant and less than infinity, and its

auto-correlation function  is dependent only on the time interval , the sto-

chastic process is called weakly stationary. Weakly stationary processes play an impor-

tant role in the field of structural dynamics, random vibrations, and signal processing.

The assumption of weakly stationarity has been used to study many physical processes.

Example of weakly stationary processes are band-limited white noise, rectangular pulse,

and binary noise [28]. Some natural phenomena can be modeled as stationary over a

specific period of time.  For example, traffic loads in a cable-stay bridge in rush hour,

where the number of cars and speed are almost constant can be modeled as a stationary

random process.  Another example of stationary random phenomenon is wind loads

X t( ) µX t( )

RXX t t τ+,( )

µX t( ) lim
N ∞→

1
N
---- xk t( )

k 1=

N

∑=

RXX t t τ+,( ) lim
N ∞→

1
N
---- xk t( )xk t τ+( )

k 1=

N

∑=

µX t( )

RXX t t τ+,( ) τ
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applied to a tall building during a storm. An example of a non-stationary random process

is the forces applied to structures by earthquakes. 

2.1.2  Statistical properties of stochastic processes

In this section the spectral density function and the correlation function are discussed.

Although all statistical properties are useful in engineering applications, these two are

the main properties used in the structural health monitoring methodology described in

this thesis.

2.1.2.1  Spectral density function

The spectral density function is a powerful tool for the analysis of stationary random

processes.  For stationary processes, the spectral density function shows the variation of

the mean square value  with respect to the frequency . For a weakly stationary ran-

dom process the cross-spectral density function  between the stochastic processes

 and  can be calculated in two ways [3]: i) from correlation functions; and, ii)

using finite Fourier transforms of sample records. Using the same procedures it is possi-

ble to determine the auto-spectral density functions  and .

Spectral density function from correlation function

For two weakly stationary random processes  and , the two-sided cross-spec-

tral density function  can be defined as the Fourier transform of the cross-correla-

tion function 

, (2-4)

ψX
2 f

SXY f( )

X t( ) Y t( )

SXX f( ) SYY f( )

X t( ) Y t( )

SXY f( )

RXY τ( )

SXY f( ) RXY τ( )e j2πfτ– τd

∞–

∞

∫=
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In the case of discrete data Eq. (2-4) is expressed as

, (2-5)

were N is the number of points of the cross correlation function .

Similarly, the auto-spectral density function  can be defined as

, (2-6)

or in discrete form

. (2-7)

To obtain spectral density functions from the correlation function it is necessary that the

correlation function exist.  It is also necessary to satisfy

, (2-8)

which is true for finite records.
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Spectral density function from finite Fourier transform of sample records.

Spectral density functions can be also obtained from finite Fourier transform of sample

records. Suppose that  and  are the i-th sample record of the stochastic pro-

cesses  and . For the interval  of the sample records define

, (2-9)

where the  operator denotes complex conjugate.   and  are Fourier

transform of  and , respectively, for the interval , given by

, (2-10)

. (2-11)

The cross-spectral density function  is obtained as the expectation of 

when  goes to infinity.  In mathematical format  is

, (2-12)

where  denotes expectation over the ensemble index . Using a similar procedure it

is possible to obtain the auto-spectral density functions  and .
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When data records are used to estimate spectral density functions using this method, it is

possible to break a record into smaller sections. This results in a better estimation of the

spectral density function through averaging.

2.1.3  Correlation function

Another important concept for random processes is the correlation function. The cross-

correlation function between the stochastic processes  and  is defined as

. (2-13)

Two stochastic processes are uncorrelated when the correlation function  is

constant for all  and equal to the product of the means .  Similarly, the

auto-correlation function of the stochastic process  is defined as

(2-14)

For the case of weakly stationary processes, the auto-correlation and cross-correlation

functions are only dependent on , or

(2-15)

. (2-16)

Several methods can be used to estimate correlation functions.  One of them is through

Eq. (2-3), where the correlation function is calculated from data records. Another

method to calculate the correlation function is via the spectral density function. Based
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X t( )
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19

on Eq (2-4), the correlation function can be calculated as the inverse Fourier transform

of the spectral density function

, (2-17)

where  is the two side cross-spectral density function between the stochastic pro-

cesses  and . In the case of discrete data Eq (2-17) can be written using the dis-

crete fast Fourier transform

(2-18)

Using cross-spectral density functions to calculate cross-correlation functions has the

advantages of filtering and averaging presented in calculation of the cross-spectral den-

sity function.

In these sections some important statistical properties of stochastic processes have been

described. These concepts are the basic tools used in many structural health monitoring

techniques. For a better understanding of the structural health monitoring methodologies

described in here it is also necessary to present mean square calculus (the calculus of

stochastic processes). The following sections will define the limit, continuity, and deriv-

ative of a stochastic process in the mean square sense. 

2.1.4  Limit in the mean square

Mean square calculus is a useful tool for engineering applications involving random pro-

cesses. The power of mean square calculus lies in the fact that operations similar to

RXY τ( ) SXY f( )ej2πfτ fd
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∞
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X t( ) Y t( )

RXY n( ) 1
N
---- SXY k( )e

j2πnk
N

---------------

k 1=

N

∑=



20

classical calculus can be developed for stochastic processes. This allows engineers to

employ the differential equations developed for deterministic data in the solution of sto-

chastic processes. Calculus in the mean square sense can only be applied to second order

stochastic processes. These processes have norm squares less than infinity 

, (2-19)

where  denotes norm. The norm of the stochastic process  is defined as

. (2-20)

Unless otherwise indicated, the stochastic processes discussed in this section will be sec-

ond order stochastic processes. 

The limit in the mean square (l.i.m.) for a stochastic process  is defined as

(2-21)

where

. (2-22)

Note that in Eq. (2-22) “lim” (with no periods) denotes limit in the ordinary sense. One

important property of the l.i.m. is the fact that the expectation of a l.i.m. is equal to the

limit of the expectation of the random process. This is

X t( ) 2 ∞<
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X t( ) E X t( )X t( )[ ]=

X t( )
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n ∞→

Xn t( ) X t( )=
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n ∞→
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. (2-23)

This property plays an important role in the relation between the derivative of the corre-

lation function of  and the correlation function of , which will be determined in

a later section.

2.1.4.1  Continuity in the mean square sense.

Before defining the derivative in the mean square sense of a stochastic process, it is nec-

essary to define continuity in the mean square sense. Let  be the correlation

function of a second order stochastic process . If  is continuous at 

in the ordinary sense, the stochastic process  is mean square continuous at . For

the case of a weakly stationary process, the correlation function is

. (2-24)

Using this equation, it is clear that weakly stationary process are continuous in the mean

square sense if  is continuous at .

2.1.4.2  Differentiation in mean square

For the continuous second order stochastic process  the derivative in the mean

square sense is defined as

. (2-25)
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For the purpose of this thesis, we are especially interested in the derivative of the corre-

lation function of random processes. Consider the correlation function between to sto-

chastic process  and ,

. (2-26)

Using Eq. (2-25) we can write Eq. (2-26) as

. (2-27)

Using Eq. (2-23) it is possible to write Eq. (2-27) as

. (2-28)

Using the property  for the stochastic processes 

and , Eq. (2-28) can be written as

, (2-29)

using Eq. (2-14)

, (2-30)
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. (2-31)

It is clear that Eq. (2-31) can be expanded to the general equation

. (2-32)

In the case of stationary processes the correlation function is described by the following

equation

. (2-33)

Using the derivative of  we obtain

(2-34)

(2-35)

Extending this idea to weakly stationary random process, the correlation function of the

derivative in the mean square can be written as

(2-36)

The last derivation is an important concept for the understanding of the Natural Excita-

tion Technique (NExT). This technique allow us to calculate correlation functions from

forced vibration records. NExT is described in the following section.
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2.2  Natural Excitation Technique (NExT)

The Natural Excitation Technique was developed by George H. James III et al. in 1992

[21]. This technique has been effective in the identification of structural modal parame-

ters in different type of civil structures using ambient vibration. Numerical studies have

been conducted by Dyke et al. [16] and Caicedo et al. [7] showing the capabilities of the

technique on the benchmark structure proposed by the IASC-ASCE Task Group on

Structural Health Monitoring Benchmark Problems [26] (see also: <http://wus-

ceel.cive.wustl.edu/asce.shm/>) . 

Experimental studies have also demonstrated the advantages of the technique. Beck et al

[2] used NExT to obtain the modal parameters of the Robert A. Millikan Library located

on the California Institute of Technology. In this study two lateral and one rotational

natural frequencies of the nine story building were found, using a total of six accelerom-

eters. Farrar and James [19] used NExT to determine natural frequencies and mode

shapes of a portion of a highway bridge. This bridge spans the Rio Grande river along

the former I-40 highway.

NExT is used to obtain correlation functions from forced vibration records, which con-

stitute the first step of the structural health monitoring methodology discussed in this

thesis. NExT is based on the fact that a structure excited with ambient vibration, the cor-

relation function between different sensors with respect to a reference sensor solve the

homogeneous differential equation. This requires that the excitation force as well as the

response of the structure can be modeled as second order stationary random processes.

Also, the reference signal should be uncorrelated with respect to the excitation of the

structure. 

Consider the differential equation of motion for a multiple degree of freedom structure
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(2-37)

where  is the mass matrix,  is the damping matrix and  is the stiffness matrix that

describe the structure, ,  and  are vectors of displacement, velocity and

acceleration, and  is a vector describing the forces applied to the structure.

Assuming that the forces applied to the structure as well as its displacement, velocity

and acceleration are second order stationary random processes, we can write Eq. (2-37)

as

(2-38)

where , ,  are vectors of stochastic process describing the displacement,

velocity, acceleration of the structure, and  is a vector of stochastic process of

forces applied to the structure. Post multiplying Eq. (2-38) by a reference signal 

and obtaining the expectation of the differential equation we obtain

, (2-39)

(2-40)

Assuming that  is a white noise process (delta-correlated) [28],  and 

are uncorrelated for all , and the means of  and  are zero, we can

write Eq. (2-40) in the following form 

Mx·· t( ) Cx· t( ) Kx+ + f t( )=

M C K

x t( ) x· t( ) x·· t( )

f t( )

MX·· t( ) CX· t( ) KX t( )+ + F t( )=

X t( ) X· t( ) X·· t( )

F t( )

xi t( )

MX·· t( )xi t τ–( ) CX· t( )xi t τ–( ) KX t( )xi t τ–( )+ + F t( )xi t τ–( )=

ME X·· t( )xi t τ–( )[ ] CE X· t( )xi t τ–( )[ ] KE X t( )xi t τ–( )[ ]+ +

E F t( )Xi t τ–( )[ ]
=

F t( ) F t( ) xi t τ–( )

τ 0> xi t τ–( ) F t( )



26

(2-41)

for , where  is a vector of correlation functions between the displacement

vector, and the reference signal. Using the property of the derivative of the correlation

function described in Eq. (2-36) we can write Eq. (2-41) as

(2-42)

Equation (2-42) shows that the vector of correlation functions between the displace-

ments and one reference signal satisfies the homogeneous equation of motion for posi-

tive . This result is valid when input forces and the displacements are uncorrelated. It

can be shown that this is also valid for records of accelerations. Taking the fourth deriv-

ative with respect to time of Eq. (2-42) we obtain

(2-43)

. (2-44)

Thus, the matrix of correlation functions satisfies the homogeneous differential equation

of motion for a multiple DOF system. In other words, the correlation functions between

the acceleration signals and a reference signal can be treated as free vibration data. This

correlation function can be obtained from forced vibration records if the force is uncor-

related with the acceleration measurements and the acceleration is stationary. Once free

vibration data is obtained from the structure it is possible to determine modal character-

istics of the structure using the Eigensystem Realization Algorithm (ERA). 
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2.3  Eigensystem Realization Algorithm

Numerous techniques available for identifying the modal parameters from the free

response data [14,15]. Here the eigensystem realization algorithm (ERA) [24,25,31] is

adopted because it is quite effective for identification of lightly damped structures and is

applicable to multi-input/multi-output systems. In the eigensystem realization algorithm,

the Hankel matrix is formed 

(2-45)

where  is the response vector at the p-th time step. The parameters  and  corre-

spond to the number of columns and rows (of response vectors) in the matrix. For good

results,  should be selected to be approximately 10 times the number of modes to be

identified, and  should be selected to be approximately 5 times  [25]. The Hankel

matrix is evaluated for  and a singular value decomposition is performed as 

. (2-46)

Relatively small singular values along the diagonal of  correspond to computational

modes. The rows and columns associated with computational modes are eliminated to

form the condensed version of these matrices , , and . The state space matri-

ces for the resulting discrete-time system are found using [24]

,  ,  , (2-47)
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where  and .  and  are identity matrix of order m

and r respectively.

The imaginary part of the eigenvalues of the associated state matrix are the identified

damped natural frequencies of the system. The  matrix is used to transform the com-

puted eigenvectors of the state matrix corresponding to the non-physical states in the

identified model, to displacement output shapes at the floors of the structure

(2-48)

were  is the matrix of output shapes and  is the matrix of eigenvectors of the state

matrix .  is not required for this analysis. The ERA method was implemented in

MATLAB® [29]. 

2.4  Determination of the Stiffness Values

Several methods may be applied to obtain the stiffness values from natural frequencies

and mode shapes. The method described in here uses a least square approach of the

eigenvalue problem to obtain an estimate of the stiffness values of the structure from the

differential equation of motion. 

2.4.1  Least squares solution of eigenvalue problem

The next step is to identify an appropriate model for the structure from the modal param-

eters identified in the ERA method. For the lumped-mass system shown in Fig. 2-2 with

n degrees of freedom, the n-th order mass and stiffness matrices are assumed to be of the

form 
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, . (2-49)

Consider the eigenvalue problem [10]

 or (2-50)

where  and  are the i-th eigenvalue and eigenvector of the structure, respectively.

Because we have specified the form of the stiffness and mass matrices, this equation can

be expanded to allow the stiffness coefficients to be assembled in a vector. For the n-

story shear structure shown in Fig. 2-2 we can rewrite Eq. (2-50) as 

(2-51)

where 
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FIGURE 2-2. Lumped mass 
model of an n-story structure. 
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, (2-52)

 , . (2-53)

Equation (2-51) can be written for each of the n eigenvalues and eigenvectors identified.

Assembling all of the eigenvector matrices.

(2-54)

where

 and . (2-55)

This equation represents a total of  equations which can be used to solve for the

vector of stiffnesses . The stiffnesses are computed by 

. (2-56)
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In general the matrix  is not square. A pseudo-inverse of this matrix is computed and

the solution corresponds to a least squares estimate of the stiffnesses [33].

2.4.1.1  General formulation

The method discussed in the previous section can be generalized so that it is applied to a

wider variety of structures. From finite element analysis we can consider only one finite

element with transversal degrees of freedom (see Fig. 2-3)

(2-57)

where  and  are the displacement of nodes 1 and 2,  and  are the forces

applied to these nodes as shown in Fig. 2-3. 

It is possible to assemble the displacements matrix of a structure from the displacements

of each finite element. For the shear model shown in Fig. 2-2, the displacement matrix

should first be written for each element 

(2-58)

∆∆
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FIGURE 2-3. Finite element
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where  correspond to the displacement at the base of the structure. Assembling the

complete deformation matrix of the structure it is possible to obtain

. (2-59)

Since  and  because of the constraints applied to the structure, we obtain

. (2-60)

Note that the assembly process for the -th vector consists in assemble the matrix in the

same way as the stiffness matrix , filling with zeros the degrees of freedom of the

structure not related to the -th element. 

This approach can also be developed for the case of a beam element in space. Two stiff-

ness values will be needed, one in each direction perpendicular to the beam element. The

equation equivalent to Eq. (2-58) is

v0

v0 v1– 0 0 0

v1 v0– v1 v2– 0 0

0 v2 v1– v2 v3– 0

0 0
0 0 vn vn 1––

k1

k2

kn

p0

p1

p2

pn

=

…

…

…

…

...
p0 0= v0 0=

v1 v1 v2– 0 0

0 v2 v1– v2 v3– 0

0 0
0 0 vn vn 1––

k1

k2

kn

p1

p2

pn

=
………

…

...

i

K

i



33

, (2-61)

where  and  are the degrees of freedom in the  direction for nodes 1 and 2; 

and  are the degrees of freedom in the  direction;  and  are the forces

applied to the element in the  direction;  and  are the forces in the  direction

(see Fig. 2-4).

2.4.1.2  Local and global coordinates.

In finite element analysis transformation of coordinates is used when elements are not

oriented alike. This concept can be applied to this technique as well. It is possible to

“rotate” a finite element from its local coordinates to its global coordinates using a trans-

formation matrix. Once all of the elements are expressed in global coordinates it is pos-

sible to assemble the displacement matrix for the whole structure as explained before. 
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Considering the finite element shown in Fig. 2-5 the transformation matrix to rotate the

displacement vector an angle  is

, (2-62)

where  is the transformation matrix defined as

. (2-63)

In system identification and structural health monitoring the acceleration of the structure

is used to detect damage. Neglecting the vertical accelerations, and assuming rigid floors

on a frame building, the structure can be modeled as beam elements with only transver-

sal degrees of freedom (  and ). In this case the transformation matrix can be written

as

α

v

v'
u

u'

α

1 2

2'

FIGURE 2-5. Transformation of coordinates
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. (2-64)

A total of three translational degrees of freedom ( ) per node will exist in a beam

element placed in the space. In this case the transformation matrix  for a bar element

can be written as

, (2-65)

where the matrix  is defined as

(2-66)

whe re  ,  ,  ,  ,

 and  .

The angles  and  are the angles of rotation with respect to the  and  axes, as

shown in Fig. 2-6. To obtain Eq. (2-66) a rotation of  degrees is done with respect to

the  axis. Then, a rotation of  degrees is done with respect to the  axis, and finally a

rotation of  degrees is done with respect to the  axis.

For the case where no axial displacement is present in the element, the matrix 
becomes 
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(2-67)

2.5  Summary

This chapter provided the reader with an introduction to stochastic processes, mean

square calculus, the NExT approach, and the ERA algorithm were discussed. These con-

cepts will be applied in the subsequent chapters to identify the existence, location, and

extent of damage in a benchmark structure. 
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z' y'

x'
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γ

FIGURE 2-6. Transformation of coordinates in the space.
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c α( )c γ( ) s α( )s β( )s γ( )+ c α( )s γ( ) s α( )s β( )c γ( )–

c β( )s γ( )– c β( )c γ( )

=
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Chapter 3 

Implementation of Proposed SHM Methodology

Ideally, implementation of a health monitoring methodology using a large quantity of

data will produce exact stiffness values. However, to be useful for health monitoring, a

methodology should produce accurate values of the stiffnesses with a limited amount of

data. The accuracy of the technique will depend on factors such as the amount of noise

present in the system, the linearity and resolution of the sensors used, and if a model is

assumed, the error between the assumed form of the model identified and the actual sys-

tem.

Before applying the structural health monitoring methodology proposed in this thesis,

studies were performed to consider various issues in the implementation of the method.

This chapter discusses these issues. The numerical models used for these studies are

finite element models developed for the benchmark problem in structural health moni-

toring of the American Society of Civil Engineering (ASCE) in collaboration with the

International Association of Structural Control (IASC) [26]. Acceleration records were

generated using the benchmark problem structural model. A 12 degree of freedom

(DOF) lumped mass model is selected for the identification model — that is, the model

assumed in the identification process is 12DOF. 

In the first part of this chapter the structural models and the identification model are

described. In later sections various questions are investigated, including: i) how much

data is required to obtain accurate estimates of the stiffnesses of the structure; ii) the
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effect of sensor noise in the identification procedure; iv) the effect of a natural frequency

out of the spectral lines of the spectral density functions; and v) modeling errors. 

3.1  Finite element models

3.1.1  Structural model

The finite element models used were developed for the benchmark problem in structural

health monitoring [26]. The model was created based on an existing scaled structure

located at the University of British Columbia, Canada [5]. Figure 3-1 shows a photo-

graph of the two-bay by two-bay steel structure. Each bay is . Hot rolled

 members are used for the columns,  members are used for the floor

beams, and  are used for bracing on each floor. Four slabs are present in

each floor. The first floor has four 800kg slabs, the second and third floor has four 600kg

slabs and the fourth floor has four 400kg slabs. One of the floor slabs in the fourth floor

can be replaced for a 550kg slab to produce an asymmetric mass distribution.

FIGURE 3-1. Benchmark structure
Courtesy Prof. Carlos Ventura

1.25m 0.9m×

B100 9× S75 11×

L25 25 3××
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For the benchmark problem two reduced order 3D finite element models were created to

model the structure based on the same analytical model [26]. The models are con-

structed using the assumption that each of the floors is rigid. In the first model, the floors

are restricted to translation in a plane parallel to the floor and rotation about the vertical

axis. Thus, each floor has three DOF per floor, two translational DOF along the longitu-

dinal and transverse axes, and one rotational DOF. A total of 12 DOF are used in this

finite element model. 

The second model has a total of 120 DOF. This finite element model assumes a rigid

floor for each level, restraining only the vertical DOF allowing the floors to rotate with

respect to the x, y and z axes. Both finite element models are provided in Matlab® [29],

and were modeled with Euler-Bernoulli elements. A 12 DOF shear building was used as

identification model.

The investigative studies discussed in this chapter were performed to examine the capa-

bilities of the technique. Thus, most of the studies presented in this chapter used the 12

DOF structural model to obtain acceleration data, making it possible to eliminate model-

ing errors. However the last study is conducted to specifically examine the effects of

modeling errors, and thus the 120 DOF model is used. 

Figure 3-2 shows a diagram of the analytical model. In the figure  and  corre-

spond to transverse acceleration measurements and  correspond to applied loads. The

properties of each element used to construct the model are shown in Table 3-1, as

reported by Johnson et al [26]. It is assumed that the braces work only in tension and

compression and have zero moment of inertia. The lateral stiffness of each floor is 106.6

MN/m in the strong (x) direction, 67.9 MN/m in the weak (y) direction and 232.0 MN/

rad in the rotational ( ) DOF. The strong direction of the columns is aligned with the x

y··ia y··ib

wi

θ
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axis, making it 57% stronger than the y-direction. This creates different dynamic charac-

teristics in the two directions. 

Mass is added to each floor with concrete slabs. The total mass of the concrete slabs is

9600kg, including 3200kg at the first floor, 2400kg at the second and third floor, and

1600kg at the fourth floor. The total mass of the structural model, including concrete

slabs, beams, columns and braces is  10,567.1 Kg. For the studies described in this

TABLE 3-1. Elements properties.

Property Columns Floor beams Braces
Denomination

Area A, 1.13×10–3 1.43×10–3 0.14×10–3

Inertia (Strong axis) 1.97×10–6 1.22×10–6 0

Inertia (Weak axis) 0.66×10–6 0.25×10–6 0

St. Venant torsion constant 8.01×10–9 38.20×10–9 0

Young’s Modulus 2×1011 2×1011 2×1011

Mass per unit length 8.89 11 1.11

FIGURE 3-2. Analytical model
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chapter symmetric mass distribution is considered to prevent coupling between transla-

tional and rotational modes. A damping ratio of 1% is used for all modes.

The natural frequencies reported by Johnson et al [26] for the 12 DOF model are

11.79Hz, 32.07Hz, 48.68Hz and 60.60Hz in the translational strong direction (x),

9.41Hz, 25.60Hz, 38.85Hz and 48.37Hz in the translational weak direction (y), and

16.53Hz, 45.17Hz, 68.64Hz and 85.51Hz for the rotational degrees of freedom ( ). In

this chapter this model is used to study the sensitivity of the proposed methodology to

the record length, effect of sensor noise and modeling errors.

The 120 DOF structural model has the same element properties and masses as the 12

DOF model. The natural frequencies reported by Johnson et al [26] are 8.53Hz,

24.24Hz, 39.73Hz and 55.16Hz in the strong (x) direction, 8.20Hz, 22.54Hz, 35.58Hz

and 46.12Hz in the weak (y) direction, and 13.95Hz, 39.05Hz, 60.75Hz, and 79.46Hz

for the rotational degree of freedom ( ). This model is used to investigate the effect of

modeling errors in the identification process.

3.1.2  Generating data from analytical model

To generate data for use in health monitoring studies, the models were excited with ran-

dom forces applied at every floor in the y-direction (weak direction) to simulate wind

vibration in the structure.  Gaussian white noise, filtered with a low-pass Butterworth fil-

ter, was used to excite the model. The cutoff frequency of the filter was 100Hz. For the

purpose of the investigative studies presented in this chapter, rotation is not taken into

account as the mass distribution of each floor is symmetric, and forces are applied in

such a way to produce motion in the weak direction only (y-axis). This simplification

allows us to focus on the capabilities of the identification methodology. Figure 3-3

shows 10 seconds of a typical force applied to the structure. 

θ

θ
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In both models the accelerometers are located on the center columns of each side of the

structure, as shown in Fig. 3-2. Gaussian pulse processes are added to the acceleration

data to simulate measurement noise in all acceleration signals. The noise was adjusted to

have a root mean square (RMS) of 10% of the RMS acceleration at the roof. Figure 3-4

shows typical records of the acceleration obtained from the structural model. The first

10 seconds of each acceleration record are ignored in the identification process to ensure

stationary data.

The noisy acceleration data was obtained with the Matlab® [29] tool developed by

researchers at the Hong Kong University of Science and Technology [26]. The govern-

ing equations are integrated at 1kHz and to obtain sensor measurements at this fre-

quency. The acceleration data is downsampled to 125Hz to apply the proposed

technique. The purpose of resampling the signal is to reduce the number of points for the

identification process, reducing the processing time. All translational modes of both

structural models are below  125Hz. The signal was resampled using the Matlab® func-

tion resample.m. Although no aliasing is expected, this function also applies an appro-

priate low pass anti-aliasing filter to the acceleration record [32].

0 2 4 6 8 1 0

- 5 0 0 0

0

5 0 0 0

FIGURE 3-3. Force record (First floor)
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3.1.3  Identification model

Figure 3-5 shows the identification model used to estimate the stiffness coefficients of

the structural model. The identification model is a 4 story shear model with DOF match-

ing the 4 translational degrees of freedom of the structural model in the weak direction

(y-axis). This model is specified within the benchmark problem [26]. This 2D model

allows the identification of the stiffness of each floor using the least squares solution of
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the eigenvalue problem discussed in 2.4.1. An estimate of the mass is needed to apply

this technique. For this study the mass is assumed to be known and equal to the struc-

tural model. Lumped masses are assumed for each floor, producing the following mass

matrix

. (3-1)

The mass matrix of Eq. 3-1 includes the concrete slabs plus the weight of the beams, col-

umns and diagonals.

Thus, for this example the  matrix and  vector for the least squares solution of

eigenvalue problem  will be

FIGURE 3-5. Identification model
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; , (3-2)

for the i-th eigenvector  and its corresponding eigenvalue . The eigenvectors and

eigenvalues were determined with the ERA method.

In this section the structural model and the identification model for the set of studies

were described. These models are used in the following sections of this chapter to study

the effectiveness and implementation of the structural health monitoring technique dis-

cussed in this thesis.

3.2  Record length and number of points per frame

The first study in the implementation of the methodology is to determine an appropriate

acceleration record length and number of points per frame. There are trade-offs in the

selection of these parameters. With longer records it is possible to do more averages,

reducing noise and numerical errors in the spectral density function. Using more points

per frame provides more resolution in the spectral density function, but more averages

are necessary to average out noise and numerical errors. For example Figure 3-6 shows

two spectral density functions in  calculated with different points per frame.

For the calculation of both spectral density functions  90 seconds of data were used. It is

clear that the spectral density function with 1024 points has less noise content than the

spectral density function with 4096 points. 

The discussed structural health monitoring methodology was used to identify the stiff-

ness values of the structural model using different record lengths. As described in

∆∆i
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0 0 φ3i φ2i– φ3i φ4i–

0 0 0 φ4i φ3i–

= ΛΛi

3452.4 φ1iλi×

2652.4 φ2iλi×

2652.4 φ3iλi×

1809.9 φ4iλi×

=

φφi λi

m2 sec3⁄



46

chapter 2, the first step of the methodology is the estimation of the spectral density func-

tions based on acceleration records. Then, the cross correlation functions are calculated

from the spectral density functions, obtaining correlation functions of the system. This

correlation functions can be treated as free vibration data. The next step is to use the

ERA to calculate the modal parameters of the structure. These modal parameters are

used in the least squares solution of the eigenvalue problem to determine the transla-

tional stiffness values of each floor.

Figure 3-7 shows typical spectral density functions of the acceleration data for each

floor using 1024 points per frame. For the calculation of the spectral density functions

the acceleration of the roof was selected as the reference signal. This channel was cho-

sen to ensure that all the modes would be observed in the data. A Hanning window is

used in each frame to reduce the effects of leakage [32]. 

The identification procedure was applied using various number of frames to determine

the most appropriate value, and to study the influence of the number of points on the

results. In the calculation of the spectral density functions, 75% overlap was used for
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each frame. Three cases are studied here by varying the frame length. Frame lengths of

1024 points, 2048 points and 4096 points are considered.

After the calculation of the spectral density functions, the correlation functions are

obtained as described in 2.1.3 In this calculation the Matlab® function ifft is used to cal-

culate the inverse fast Fourier transform of the spectral density function. Figure 3-8

shows the sets of correlation functions corresponding to the spectral density functions

shown in Fig. 3-7.
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The next step is to use the ERA method to obtain natural frequencies and mode shapes

from the correlation functions. For this operation ERA was programmed in Matlab®.

The Hankel matrix used in the ERA has 40 columns and 200 rows, using a total time of

0.864 seconds of correlation function. Figure 3-9 shows the singular values of the Han-

kel matrix. In this figure we can observe that the first 8 singular values are much higher

than the other values, indicating that these values correspond to the poles of the structure

and all other values are computational modes. After eliminating the computational
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modes a discrete-time system is obtained [24]. The natural frequencies of the structural

model (y-axis) and the identified with the ERA method are shown in Table 3-2. Figure

3-10 shows the corresponding mode shapes. The identified damping coefficients of the

structure were 1.17%, 1.10%, 1.13% and  1.04% for the first, second, third a fourth

mode respectively.  

The last step of the methodology is estimate the stiffness values of the structure based on

the natural frequencies and mode shapes obtained with ERA. For this the least squares
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solution of the eigenvalue problem technique was used. The identified stiffnesses are

shown in Table 3-3.  

This procedure was applied to data records with different lengths. In the study frames of

1024 points, 2048 points and 4096 points with 75% overlapping are considered. The

variation in the identified natural frequencies, mode shapes, stiffness values and damp-

ing were studied. The results are discussed in the following sections.

3.2.1  Influence of record length on natural frequencies

Figure 3-11 shows the sensitivity of the natural frequencies obtained with the ERA with

respect to the record length. It is clear that the ERA is able to obtain accurate values of

the natural frequencies with only a few frames. Increasing the resolution in the window

(i.e., using a larger frame size) decreases the number of frames needed to identify the

correct natural frequencies. In terms of the number of seconds needed in the identifica-

tion process about the same time will be needed to obtain similar results with the three

frame lengths studied. 

TABLE 3-2. Natural frequencies of exact and identified model (ERA)

Natural Freq.
No

Exact
(Hz)

Identified (ERA)
(Hz)

Error
(%)

1 9.41 9.40 0.11
2 25.60 25.57 0.12
3 38.85 38.65 0.51
4 48.37 47.99 0.78

TABLE 3-3. Stiffness of structural and identified models.

Floor No
Exact

(MN/m)
Identified
(MN/m)

Error
(%)

1 67.9 68.22 0.47
2 67.9 67.98 0.12
3 67.9 67.70 0.29
4 67.9 67.81 0.13
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To compare the results obtained in each case define the frequencies total error in the fre-

quency results as

, (3-3)
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where  and  are the i-th natural frequencies from ERA and the struc-

tural model,  denotes absolute value, and n is the number of natural frequencies of the

system. In this case n is equal to 4. Figure 3-12 shows the total error with respect to time

record for window length of 1024, 2048 and 4096 points. After 200 seconds the steady

state condition for each case is reached. In all three cases the error is similar in magni-

tude. The lowest error occurs when 4096 points per window are used, and the highest

error occurs when  1024 points are used. Note that a bias error was found in the identifi-

cation of the natural frequencies. This bias error is mostly due to bias errors in the calcu-

lation of the spectral density function [36, 37].

3.2.2  Influence of the records length on mode shapes

The total error for the mode shapes is defined as

(3-4)
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where  is the term of the eigenvector matrix  located in the i-th row and j-th col-

umn, and n is the number of natural frequencies of the structure. In this case n is equal to

4. The subscript identified is used for the identified mode shapes, and the subscript exact

is used for the exact mode shapes of the structure. All the mode shapes are normalized

by setting the maximum deflection equal to 1.

The sensitivity of the mode shapes with respect to the record length is shown in Fig. 3-

13. Using about 100 seconds of data produces good results, and using more data does

not improve the results. Thus, with short records it is better to use larger frames but with

records larger than 100 seconds any of the three frame length studied give similar

results.

3.2.3  Influence of the record length on damping

The sensitivity of the damping estimate with respect to the record length is shown in Fig.

3-14. As expected, the damping ratios estimated with the ERA method improved when

longer windows were used. When short records were used, the damping ratio of the first

mode has large errors due to the lack of information about this mode. For the calculation
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of damping in the structure it is more important to use more frames than for the determi-

nation of natural frequencies. 

To study the error in damping define the total error in the damping ratio as
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(3-5)

where  and  are the identified and exact damping ratios of the i-th

mode. Figure 3-15 shows the variation in the damping error with respect to the record

length. After approximately 500 seconds the steady state in the total error of the damp-

ing ratio is reached. Calculated damping ratios have larger errors than calculated natural

frequencies, and a better approximation was observed with larger frames.

3.2.4  Stiffness coefficients

Figure 3-16 shows the variation of the calculated stiffness coefficients with respect to

the number of frames. As expected for this simple problem, all stiffnesses converge to

the theoretical horizontal stiffness of 67.9 MN/m. With 200 seconds of data the esti-

mated stiffness values have reached a steady state. The accuracy in the estimate does not

increase significantly by increasing the number of points of each frame. 
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To study the error in the stiffness, define the total error in the stiffness as 

(3-6)
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where  is the exact horizontal stiffness of the i-th floor,  is the identi-

fied horizontal stiffness for the i-th floor, and n is the number of identified stiffnesses.

Figure 3-17 provides the variation of the stiffness total error with respect to the record

length. With 100 seconds of data a good estimate of the stiffness values is obtained.  All

3 frames lengths showed similar behavior, with the same steady state error of 0.85%.

This error is due to the sensor noise included in the signal, possible windowing leakage

and  computational errors.

3.3  Spectral lines

When the spectral density function is calculated using a computer, discrete points are

obtained from the discrete Fourier transform. The frequencies corresponding to these

points are called spectral lines. In this section, the sensitivity of the method is studied to

determine if the performance of the ERA method changes if the frequency are on or off

the spectral lines. This study considers a one degree of freedom undamped structure.

Four structures are studied as shown in table 3-4.
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The one DOF structure is excited with the same excitation force used for the study in

section 3.2. The system is simulated for 100 seconds but only 90 seconds of stationary

data are used for the identification process. Noise is not added to the measurements.

Acceleration was obtained using the lsim command available in Matlab using 125 Hz as

integration frequency. No resampling was applied to the data. Frames with 1024 points

(75% overlapping) are used for the calculation of the spectral density functions. The

Hankel matrix used in the ERA method had 25 rows and 5 columns of data, using a total

of 0.384 seconds of correlation function.

Spectral lines are calculated at 10.8643Hz 10.9863 Hz, 24.2920Hz and 24.4141Hz.

Cases A1–2 correspond to natural frequency matching an spectral line, and cases B1–2

correspond to natural frequencies not matching any spectral line. 

Table 3-5 shows the identified and theoretical natural frequencies. The results obtained

in both cases are extremely accurate. No error is induced in the procedure by having fre-

quencies between spectral lines. This result also indicates that the number of points per

frame does not influence the results of the ERA method very much.

3.4  Sensor noise

The effect of sensor noise on the results is investigated in this section. In this study the

12 DOF model developed for the health monitoring benchmark problem [26] is used.

Sensor noise is included in the acceleration records as a Gaussian pulse process. In this

TABLE 3-4. Structural characteristics (1 DOF).

Case Stiffness (MN/m) Mass (Kg)
Natural frequency

(Hz)
A1 106.6 22,877 10.8643
A2 106.6 4,576 24.2920
B1 106.6 22,622 10.9253
B2 106.6 4,553 24.3530
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study 1024 points per frame with 75% overlapping is used for the calculations of the

spectral density functions. For the identification process 90 seconds of stationary data at

125 Hz were used. The ERA method was applied using 0.864 seconds of free response

data to identify natural frequencies and mode shapes. The Hankel matrix was con-

structed with 200 rows and 40 columns. 

The RMS of the noise is varied from 10% to 500% of the RMS of the roof acceleration.

Figure 3-18 shows the resulting variation in the stiffness error with respect to the noise

level. The methodology was found noise insensitive up to an RMS of 350% the RMS of

the roof acceleration. In this numerical experiment notice that for noise levels lower than

350% the error slightly decreases when the error RMS increases. 

TABLE 3-5.  Identified and theoretical natural frequencies

Case
Theoretical N.F.

(Hz)
Identified N.F.

(Hz)
Error
(%)

A1 10.8643 10.8605 0.0350
A2 24.2920 24.2925 0.0022
B1 10.9253 10.9252 0.0091
B2 24.3530 24.3621 0.0373
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This insensitivity to sensor noise indicates that this methodology will be appropriate for

identification using ambient vibration measurements. This will be tested on the experi-

mental phase of the IASC-ASCE benchmark problem [17].

3.5  Modeling errors

The sensitivity of the technique due to modeling errors is studied in this section. When a

real structure is modeled with a finite number of degrees of freedom (due to oversimpli-

fication in the model) errors will result because the n parameters used in the identifica-

tion model cannot accurately represent the actual structure. The 120 DOF and 12 DOF

models used in the health monitoring benchmark problem of the IASC-ASCE [26] are

considered. The identification model is a simple 12 DOF shear building model. The 120

DOF model, used to generate the data, is considered to be the actual structure that is to

be identified. The characteristics of the structural model and the identification models

are described in detail in section 3.1.

Both models are excited in the weak direction (y-axis) with four forces, modeled as

bandlimited white noise that is filtered with a low-pass Butterworth filter as described in

section 3.1. One hundred seconds of acceleration data are generated at 1000Hz and resa-

mpled at 125Hz. Sensor noise is added modeled as Gaussian pulse processes with RMS

of 10% the RMS of the roof acceleration. 

The parameters used in the identification procedure (record length, number of points per

frame, etc.) were selected based on what was learned in the previous studies. Ninety sec-

onds of stationary data are used in the identification process. Frames of 1024 points with

75% overlapping are used in the calculation of the spectral density functions. The Han-

kel matrix used in the ERA has 40 columns and 200 rows, using 0.864 seconds of corre-

lation function. 
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The identified stiffnesses of the two structural models are shown in Table 3-7. It is clear

that modeling errors have a strong influence on the calculation of the identified stiff-

nesses. With no modeling errors (12 DOF structural model) a maximum difference of

0.47% is obtained between the identified and the actual stiffnesses. With modeling

errors a maximum difference of 16.03% is observed, indicating that the selection of an

appropriate identification model plays an important role in the identification process.

The identified and structural natural frequencies are shown in Table 3-7. Here we can

observe that the ERA does a good job identifying the natural frequencies of both sys-

tems, indicating that the error in the identification process is a result of the choice of

identification model.

3.6  Summary

In this chapter the sensitivity of the technique to different parameters was studied.

Record lengths of 100 seconds at 125 Hz were found to be appropriate for structures

TABLE 3-6. Exact and identified stiffness (MN/m) of 12 and 120 DOF models.

Floor No
12 DOF structural model 120 DOF structural model

Exact Identified Error Exact Identified Error
1 67.9 68.22 0.47% 61.38 63.60 3.61%
2 67.9 67.98 0.12% 55.95 64.69 15.62%
3 67.9 67.70 0.29% 54.45 63.18 16.03%
4 67.9 67.81 0.13% 51.28 55.16 7.57%

TABLE 3-7. Exact and identified natural freq. of 12 and 120 DOF models.

Nat 
Freq No

12 DOF structural model 120 DOF structural model

Exact Identified Error Exact Identified Error
1 9.41Hz 9.40Hz 0.11% 8.20Hz 8.21Hz 0.12%
2 25.60Hz 25.57Hz 0.12% 22.54Hz 22.57Hz 0.13%
3 38.85Hz 38.65Hz 0.51% 35.58Hz 35.55Hz 0.08%
4 48.37Hz 47.99Hz 0.78% 46.12Hz 46.09Hz 0.06%
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with natural frequencies ranging from 9Hz to 50Hz. The technique was found to be rela-

tive insensitive to the number of points per frame used in the calculation of the spectral

density function. It was also found to be insensitive to Gaussian noise in the measure-

ments. The ERA method was able to calculate natural frequencies accurately, even when

the natural frequency does not lie directly on a spectral line. A bias error was found due

to leakage and bias errors in the calculation of the spectral density functions. Modeling

errors were found to be the most important source of errors in the numerical studies car-

ried out. These results indicates that this technique has potential as a system identifica-

tion technique for civil structures using ambient vibration data. 
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Chapter 4 

Application of Health Monitoring to Simulated 
Data 

Numerous techniques have been developed for structural health monitoring. These tech-

niques have been applied to many structures in various environments making it difficult

to compare the capabilities and deficiencies of each technique. The dynamics committee

of the American Society of Civil Engineers (ASCE) joined with the International Asso-

ciation for Structural Control (IASC) to develop a benchmark problem to compare the

pros and cons of each technique [26]. The subject of the structural health monitoring

benchmark problem is the existing scaled structure located in the University of British

Columbia, Canada [5]. The benchmark problem has two phases, a numerical phase and

an experimental phase. 

For the first phase of the benchmark problem two finite element models based on the

structure are developed. The two models, referred to as structural models, play the role

of the real structure in the generation of acceleration data. A third model is used to iden-

tify the stiffness coefficients of the structure. This model is called identification model.

In chapter 3 the structure and the finite element models developed for the benchmark

problem were discussed. No further description of the structure and the finite elements is

given in this chapter. 
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The second phase of the benchmark problem will use acceleration records of the real

structure as data for researchers to identify damage [17]. This phase is currently under

development and it is not discussed in this thesis. 

This chapter discusses the application and results of the structural health monitoring

methodology discussed in this thesis to the first phase of the ASCE structural health

monitoring benchmark problem. A description of the benchmark problem, excitation

cases and damage patterns is given in the first section of this chapter. In the second sec-

tion a discussion of the identification parameters used for the methodology to solve the

benchmark problem is provided. Then, the results of the identification process are dis-

cussed, followed by a summary.

4.1  Benchmark problem definition

The IASC-ASCE structural health monitoring benchmark problem has a total of six

cases to be studied. Each case differs in the excitation forces, structural configuration,

and damage patterns. A 12 DOF model and a 120 DOF model are used to obtain acceler-

ation data in the benchmark problem. The mass distribution of these structures is sym-

metric or asymmetric depending of the identification case. The difficulty of the

identification process increases with the case number. For example, in the first case the

12 DOF symmetric structure is used for the identification of 2 damage patterns, and in

case 6 the 120 DOF asymmetric structure is used to identify 5 patterns of damage with

limited sensors. The different identification cases, damage patterns and excitation cases

are described in the following sections. 

4.1.1  Damage patterns 

Damage in the structure is simulated by removing braces or decreasing the stiffness of

the floor beams. The following five different damage patterns were defined in the

benchmark problem: i) all braces in the first story are removed; ii) all the braces of the
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first and third stories are removed; iii) one brace in the first story is removed; iv) one

brace is removed in the first and third stories; and v) one brace is removed in the first

and third stories and a floor beam is loosen in the first story. Figure 4-1 shows the differ-

ent damage patterns.

Johnson et al [26] reported changes in the natural frequencies for damage patterns 1 and

2 for both models. These values are shown in Table 4-1. In this table we can observe that

the 120 DOF model has lower natural frequencies than the 12 DOF model. The first nat-

ural frequency is in the translational direction of the weak direction (y-axis) in both

models. The first natural frequency of the 12 DOF model changes from 9.41 Hz for the

undamaged case to 6.24 Hz and 5.83 Hz for the first and second damage pattern. For the

120 DOF model the first natural frequency changes from 8.20 Hz in the undamaged case

to 4.91 Hz and 4.36 Hz for the first and second damage patterns.

TABLE 4-1. Natural frequencies for the undamaged structure and cases 1 and 2.

Mode 
Type

12 DOF Model 120 DOF Model

Undamaged Patt. 1 Patt. 2 Undamaged Patt. 1 Patt. 2
Trans (y) 9.41 6.24 5.83 8.20 4.91 4.36
Trans (x) 11.79 9.91 9.52 8.53 6.61 5.77

Rotat. 16.53 11.84 11.13 13.95 8.82 7.74
Trans (y) 25.60 21.58 14.93 22.54 18.38 10.26
Trans (x) 32.07 28.99 24.98 24.24 21.06 15.22
Trans (y) 38.85 37.56 28.78 35.58 32.56 18.32

Rotat. 45.17 38.75 36.28 39.05 33.98 33.80
Trans (y) 48.37 47.57 41.65 39.73 38.09 37.47
Trans (x) 48.68 48.19 47.06 46.12 45.80 37.83
Trans (x) 60.60 60.45 54.76 55.16 54.68 47.81

Rotat. 68.64 66.46 64.86 60.75 58.11 58.01
Rotat. 85.51 85.20 74.27 79.46 78.80 66.38
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(a) Undamaged (b) Damage Pattern 1

(e) Damage Pattern 4 (f) Damage Pattern 5

(c) Damage Pattern 2 (d) Damage Pattern 3
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diagonals
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floor
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FIGURE 4-1. Damage patterns
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To identify the occurrence of damage, the stiffness of each floor in the damaged cases

are compared to that of the undamaged case. The percent reduction in the stiffness val-

ues are defined as

, (4-1)

where  is the undamaged stiffness of the i-th floor and  is the dam-

aged stiffness of the i-th floor.

Johnson et al. [26] also reported the theoretical stiffness values for the first 2 damage

cases for the 12 DOF structure. In the strong direction (x-axis) the healthy structure has a

original stiffness of 106.6 MN/m in each floor. When the braces are removed, the stiff-

ness  in this direction decreases to 58.4 MN/m in the damaged floor, for a stiffness loss

of 45.21%. In the weak direction (y-axis) the healthy structure has a stiffness of 67.9

MN-m. When braces are removed, the stiffness of the damaged floor in this direction is

19.7 MN-m, for a stiffness loss of 70.99%.

4.1.2  Mass distribution

The basic structure has a symmetric mass distribution as discussed in Section 3.1. The

total mass of the structure is 10,567.1 Kg including beams, columns, diagonals and con-

crete slabs. The mass of the concrete slabs is 3,200 Kg at the first floor, 2,400 Kg at the

second  and third floor, and 1,600 Kg at the fourth floor.

An asymmetric mass distribution was also considered in the benchmark problem. This

distribution was obtained by changing one of the four concrete slabs of 400 Kg at the

Stiffness loss i-th floor (%)
ki  undamaged ki damaged–

ki undamaged
------------------------------------------------------- 100×=

ki undamaged ki damaged
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roof to a concrete slab of 550 Kg as shown in Fig. 4-2. This allows coupling between the

translational and rotational motions of the structure. 

4.1.3  Excitation cases

Two excitation cases were used in the benchmark problem (Fig. 4-3.) The first type of

excitation is a horizontal force applied to each floor of the structure, modeling ambient

excitation or wind excitation (Fig. 4-3a). The forces are modeled as independent Gauss-

ian white noise processes filtered with a 6th order low-pass Butterworth filter. This filter

has a cutoff frequency of 100 Hz as reported by Johnson et al. [26]. 

The second type of excitation is force at the top of the structure (Fig. 4-3b). This force

will simulate the effects of a shaker on the roof. The load applied to the structure is

applied along the diagonal. Note that when the mass distribution is symmetric, there is

FIGURE 4-2. Asymmetric mass distribution

550 Kg mass
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no rotation due to this force. The force in the shaker was also a Gaussian white noise

process filtered with a low-pass Butterworth filter.

4.1.4  Identification cases

Six different identification cases with increasing levels of difficulty were considered.

The first three cases used symmetric mass models and identification was performed in

the weak direction (y-axis) of the structure. In cases 4 thought 6 the asymmetric mass

models were used.

In the first identification case the 12 DOF structure is used to generate acceleration data.

The model was excited with the ambient excitation. Four acceleration sensors are avail-

able per floor with a sensor noise with RMS of 10% the RMS of the roof. Damage pat-

terns one and two were considered in this case. This is the basic identification case,

where only one dimensional damage is considered with no modeling errors.

FIGURE 4-3. Excitations.

Shaker

(a) Wind ambient vibration (b) Forced vibration
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Modeling errors are included to the structural health monitoring procedure in case two.

This case identification case two has the same characteristics as case one but the 120

DOF model was used to generate the data. 

Case three is similar to case one but the shaker is used to excite the structure instead of

the ambient vibration. Only damage patterns one and two are considered in this case.

Because the shaker is located in the roof diagonal, the forces excite the weak and the

strong axes of the structure. Thus, damage identification is required for both axes (x and

y axes).

Case four is the first case where asymmetric mass distribution is considered and cou-

pling between the rotational and translational modes of vibration is studied. The 12 DOF

model was used. This model was excited with the shaker forces to generate acceleration

data in the 14 sensors. In this case all damage patterns are present. 

Case five and six have the same characteristics as case four but the 120 DOF model is

used. In case five all of the sensors are used for the identification process. However, in

case six limited sensors (at the second and fourth floors) are available.

The proposed structural health monitoring methodology was used to identify damage in

each of the cases and damage patterns described in this section using the parameters

found in chapter 3. In the next section a description of the parameters used for the meth-

odology for the identification of damage is provided. 

4.2  Solution to the benchmark problem

The methodology proposed in this thesis was used to solve the identification cases pro-

posed in the IASC-ASCE structural health monitoring benchmark problem. Based on
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the results obtained in chapter 3 the following parameters were used in the identification

procedure:

• Acceleration data was resampled to 125 Hz, which is large enough to identify all 

the translational modes of vibration of the structure.

• In the calculation of the spectral density functions a frame of 1024 points was 

used with a 75% overlapping. This allows us to maximize the averaging of the 

points with shorter records.

• A record length of 90 seconds was used, for a total of 40 averages in the calcula-

tion of the spectral density function.

• To reduce the effects of leakage a Hanning window was used in the calculations 

of the spectral density functions [32].

• The reference channel to calculate the spectral density functions is the accelera-

tion at the roof. This channel was selected because all modes are observed at this 

point.

• The Hankel matrix used in the ERA method has a total of 40 columns and 200 

rows. Thus, the ERA method uses 0.864 seconds of the correlation function.

• The first 8 singular values of the Hankel matrix were selected as the poles of the 

structure. The remaining 32 values are considered computational modes.

Using these parameters the six cases of the benchmark problem were solved. The results

of the application is discussed in the next section.

4.3  Results

The results of the benchmark problem are presented in this section. The first part focuses

on cases 1 through 3, where only two damage patterns are considered. The second part

focuses on the cases 4 and 5, where all five damage patterns are considered. The final

part discusses the results of case 6, in which limited sensor data is available. 
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4.3.1  Benchmark Problem Cases 1 through 3 

The structural health monitoring technique was applied to the first three cases of the

benchmark structural health monitoring problem. A representative cross-spectral density

function and cross-correlation function (case 1, undamaged) are shown in Fig. 4-4. The

results of cases 1 through 3 are provided in Table 4-2. The first four columns provide the

frequencies identified with the ERA algorithm. The last four columns show the natural

frequencies of the identified model using the stiffness values obtained with the leas

squares estimates. The least squares estimates of the stiffness values for each floor are

provided in table 4-3. 

For the 12 DOF model the ERA results are all within 0.79% of the reported frequencies

by Johnson et al [26] shown in table 4-1. The maximum difference between the exact

values and those obtained using the resulting identified stiffness values in Table 4-2 is

0.83%.  The ERA results are all within 0.17% of the reported frequencies for the 120

DOF structure (Table 4-1). 

FIGURE 4-4. Representative Cross-spectral Density Function and 
Cross-correlation Functions (Case 1, Undamaged). 
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For the 12 DOF model (cases 1 and 3) the identified stiffness values range between

105.20 to 107.79MN/m in the strong direction, and 67.60 to 68.42 MN/m in the weak

direction for the undamaged case. These results are within 1.11% and 0.77% of the

actual values, respectively. When all the braces are removed, the identified values range

from 57.58  to 58.28MN/m in the strong direction and 19.23MN/m to 20.84MN/

m in the weak direction which are within 1.40% and 5.6% of the actual values, respec-

tively. 

In case 2 the 120 DOF model is used to generate the data. Thus, because we have

decided to base the technique on a model of a set order, the identified values of the stiff-

nesses are equivalent values which correspond to a least squares estimate, and they can-

not be compared to exact values. As expected, the identified equivalent horizontal

stiffnesses of this model are lower than the stiffnesses of the identified 12DOF. 

TABLE 4-2. Identified Natural Frequencies for cases 1 through 3. 

Case
Damage 
Pattern

ERA Nat. Freq. (Hz) Least Squares Nat. Freq. (Hz)

1
(y-axis)

No damage 9.40 25.57 38.65 47.99 9.42 25.54 38.67 47.97
Pattern 1 6.25 21.53 37.33 47.79 6.22 21.50 37.36 47.78
Pattern 2 5.84 14.89 36.14 41.40 5.80 14.77 36.08 41.45

2
(y-axis)

No damage 8.21 22.58 35.55 46.10 9.11 24.34 36.37 45.46
Pattern 1 4.91 18.35 34.04 45.76 5.71 20.40 35.04 45.21
Pattern 2 4.36 10.26 33.84 37.40 5.19 12.80 34.31 36.74

3
(x-axis)

No damage 11.75 32.04 48.44 60.10 11.80 32.02 48.37 60.19
Pattern 1 9.90 28.92 47.24 59.92 9.89 28.91 47.26 59.95
Pattern 2 9.51 24.87 46.86 54.35 9.49 24.82 46.83 54.39

3
(y-axis)

No damage 9.43 25.57 38.73 48.06 9.40 25.52 38.73 48.04
Pattern 1 6.22 21.54 37.43 47.89 6.19 21.50 37.46 47.85
Pattern 2 5.83 14.90 36.17 41.32 5.91 15.22 36.12 41.25

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4

MN m⁄



74

Figure 4-5 shows the stiffness loss for each case. In this figure we can see clearly that

damage occurs in the first floor for damage pattern one and in the first and third floor for

damage pattern two in all three identification cases.

Table 4-4 provides the values of the stiffness loss in cases 1 to 3. Negative values indi-

cate a identified increase of the stiffness. 

Notice from Table 4-4 that the stiffness reduction based on the identified values

obtained in cases 1 and 3 are quite accurate. These cases are accurate because the 12

DOF model is used to generate the data. The form of the actual model used to generate

the data and the assumed form of the model are identical. Notice also that there is no sig-

nificant difference in the values of the stiffnesses obtained in the case 1 and the weak

direction of case 3. The proposed technique is able to successfully identify damage for

the cases in wind excitation is applied to all floors (case 1) as well as when a single exci-

tation is applied at the top floor (case 3). 

TABLE 4-3. Identified stiffness coefficients (Cases 1, 2 and 3).

Case
Damage 
Pattern

Stiffness (MN/m)
k1 k2 k3 k4

1
(Y-axis)

No damage 68.12 68.00 67.70 67.82
Pattern 1 19.50 67.96 67.66 67.79
Pattern 2 19.59 68.06 19.23 68.41

2
(Y-axis)

No damage 63.63 64.69 63.19 55.14
Pattern 1 16.08 64.62 63.32 55.27
Pattern 2 15.77 63.96 13.90 53.36

3
(X-axis)

No damage 106.30 107.25 107.79 105.20
Pattern 1 57.75 108.15 107.64 104.28
Pattern 2 58.28 106.69 57.58 107.36

3
(Y-axis)

No damage 67.60 68.03 67.65 68.42
Pattern 1 19.30 68.23 67.61 68.31
Pattern 2 20.23 67.91 20.84 67.11
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In case 2 the form of the actual model (120 DOF) and the assumed model are different.

However, the frequencies identified by the ERA method are within 0.17% of the theoret-

ical values. Thus the errors in the obtained stiffnesses can be attributed primarily to

modeling errors (i.e., the 12DOF model selected cannot represent the 120DOF structure

well). Modeling errors due to the computation of an equivalent stiffness appear as a

larger reduction of stiffness in damage floors. Further in the 120DOF finite element

model, removal of a brace will effect the stiffness of the floors above and below that

level. Interestingly, the effects of this damage on the stiffnesses of the other floors in the

results obtained for case 2 were observed. Here there is a 1.13% reduction in  and a

3.24% reduction in  for damage pattern 2. Because the magnitude of the damage is
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through 3. 
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significantly larger than the effects of modeling errors in this example we can still iden-

tify the damaged floors. 

4.3.2  Benchmark Problem Cases 4 and 5

Five patterns of damage are considered in cases 4 and 5. Table 4-5 provides the resulting

frequencies determined using the ERA algorithm and the identified stiffness values. The

loss in the identified stiffness values is displayed graphically in Fig. 4-6. In case 4 the 12

DOF model is used to generate the data, and in case 5 the 120 DOF model is used to

generate the data. Additionally, the mass is distributed asymmetrically in these cases,

resulting in a coupling between the x and y-motions. Because the floors are assumed to

be rigid, we can decouple the motions in these two directions to determine the transla-

tional acceleration in the x and y direction of the structure. The motions are decoupled

using the average of two accelerations on opposite faces of the structure as 

, (4-2)

where  is the acceleration in the i-th direction (x or y),  and  are the two acceler-

ations. Because we decouple the motions of the structure, the torsional frequencies are

not present in the cross-spectral densities. However, this information is not necessary as

it is used in the identification procedure. 

TABLE 4-4. Loss in Stiffness Values for Cases 1 through 3. 

Case
Damage Pattern 1 Damage Pattern 2

k1 (%) k2 (%) k3 (%) k4 (%) k1 (%) k2 (%) k3 (%) k4 (%)
1-Weak (Y) 71.37 0.06 0.05 0.05 71.24 -0.08 71.60 -0.87
2-Weak (Y) 74.73 0.10 -0.21 -0.23 75.22 1.13 78.00 3.24
3-Strong (X) 45.67 -0.84 0.13 0.87 45.18 0.52 46.58 -2.06
3-Weak (Y) 71.45 -0.30 0.06 0.17 70.08 0.17 69.20 1.92

ai
a1i a2i+

2
--------------------=

ai a1i a2i
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Notice that the identified stiffness values resulting from data generated with the undam-

aged 12 DOF model (case 4) are between 108.11MN/m and 105.06MN/m in the strong

direction, and between 67.65MN/m and 68.23MN/m, which are within 1.44% and

0.49% of the actual values. The stiffness values identified in damage patterns 1 and 2 are

also quite close to the exact values reported in Johnson et al. [26]. Thus, the identifica-

tion procedure is not affected by the coupling due to asymmetry in the mass distribution. 

In case 4, accurate stiffness values are obtained for damage patterns 1 and 2. A smaller

reduction is stiffness is observed in damage patterns 3 and 4, although the damage can

be clearly associated with the floors which are damaged. Because the loosening of a

beam in a 12 DOF model (case 4) does not effect enough the stiffness matrix to change
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the natural frequencies of the system (the largest change in the frequencies is 0.26%),

the stiffness values identified for damage pattern 5 are identical to those identified for

damage pattern 4. 

In case 5 the identified stiffness values obtained using the data corresponding to damage

patterns 1 and 2 are close to the values obtained in case 2. A smaller reduction is

observed in damage patterns 3 and 4. Again, although only one brace is removed, the

TABLE 4-5. Natural Frequencies for Cases 4 and 5.

Case
Damage 
Pattern

Natural Freq. (Hz) - ERA Nat. Freq. (Hz) Least squares

4
(X axis)

No damage 11.62 31.58 48.04 59.73 11.64 31.67 47.82 59.88
Pattern 1 9.79 28.52 46.86 59.55 9.76 28.56 46.73 59.65
Pattern 2 9.41 24.69 46.56 53.66 9.36 24.59 46.51 53.71
Pattern 3 11.62 31.57 48.03 59.72 11.64 31.67 47.81 59.88
Pattern 4 11.49 30.84 48.03 58.07 11.51 30.86 47.88 58.19
Pattern 5 11.49 30.84 48.03 58.07 11.51 30.86 47.88 58.19

4
(Y axis)

No damage 9.32 25.25 38.26 47.83 9.29 25.25 38.33 47.75
Pattern 1 6.16 21.27 36.72 47.49 6.01 21.12 36.86 47.41
Pattern 2 5.77 14.79 36.03 40.60 5.81 14.95 35.94 40.63
Pattern 3 8.77 24.43 37.81 47.70 8.79 24.27 37.86 47.66
Pattern 4 8.77 24.43 37.80 47.70 8.78 24.26 37.85 47.66
Pattern 5 8.77 24.43 37.80 47.70 8.78 24.26 37.85 47.66

5
(X axis)

No damage 8.40 23.91 39.43 54.99 10.76 27.86 41.17 53.34
Pattern 1 6.53 20.77 37.68 54.51 8.79 25.08 39.89 52.98
Pattern 2 5.70 15.11 37.31 47.60 8.05 20.27 39.57 45.96
Pattern 3 8.40 23.91 39.40 54.99 10.76 27.85 41.15 53.34
Pattern 4 8.13 22.96 39.16 53.18 10.58 27.09 40.99 51.37
Pattern 5 8.13 22.96 39.16 53.18 10.58 27.09 40.99 51.37

5
(Y axis)

No damage 8.08 22.26 35.21 45.96 8.98 24.05 35.93 45.30
Pattern 1 4.86 18.14 33.62 45.61 5.68 20.14 34.57 45.04
Pattern 2 4.30 10.21 33.52 37.02 5.12 12.83 34.13 36.34
Pattern 3 7.61 21.34 34.54 45.82 8.43 23.02 35.39 45.16
Pattern 4 7.60 21.29 34.50 45.82 8.40 22.96 35.37 45.15
Pattern 5 7.59 21.28 34.50 45.81 8.41 22.96 35.37 45.14

ω1 ω2 ω3 ω4 ω1 ω2 ω3 ω4
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damage is extensive enough to clearly identify the floors at which damage occurs. How-

ever, the additional damage due to the loosened floor beam in damage pattern 5 is not

clearly identified. This additional damage results in a very small change in the frequen-

cies of the structure. The modeling errors incurred by the limitation of the 12 DOF iden-

tification model are of the same order as the additional stiffness reduction. Perhaps

releasing the restriction of the 12 DOF identification model would allow this additional

damage to be identified.  

TABLE 4-6. Identified stiffness coefficients (cases 4 and 5)

Case
Damage 
Pattern

Stiffness (MN/m)
k1 k2 k3 k4

4
(X axis)

No damage 106.14 106.96 108.11 105.06
Pattern 1 57.58 107.24 107.37 105.37
Pattern 2 57.93 106.81 57.59 107.32
Pattern 3 106.13 106.97 108.15 104.97
Pattern 4 106.14 107.18 94.41 105.54
Pattern 5 106.14 107.18 94.41 105.54

4
(Y axis)

No damage 67.65 68.21 67.63 68.23
Pattern 1 18.34 68.42 67.63 67.08
Pattern 2 20.08 67.58 20.22 67.84
Pattern 3 54.75 67.72 67.66 68.23
Pattern 4 54.61 67.60 67.68 68.29
Pattern 5 54.61 67.60 67.68 68.29

5
(X axis)

No damage 91.59 95.41 89.44 64.10
Pattern 1 45.53 95.45 89.59 64.38
Pattern 2 41.92 98.37 38.04 64.87
Pattern 3 91.52 95.43 89.45 64.01
Pattern 4 91.21 95.74 75.03 64.32
Pattern 5 91.20 95.74 75.04 64.31

5
(Y axis)

No damage 63.66 64.31 63.38 55.11
Pattern 1 16.25 64.33 63.45 55.36
Pattern 2 15.56 64.04 14.38 53.66
Pattern 3 49.91 64.04 63.49 54.85
Pattern 4 49.26 64.08 63.42 54.85
Pattern 5 49.33 64.02 63.38 54.85
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4.3.3  Benchmark Problem Case 6 

Case 6 of the benchmark problem focuses on the case in which the number of sensors on

the structure is limited. Specifically, the sensors on the first and third floors are removed

in this case of the benchmark study. Because these sensors are not used, the entire eigen-

vector matrix cannot be identified. An iterative procedure was developed to determine

the eigenvectors and the stiffness terms. A description of the method is provided in Fig.

4-7. The steps in this procedure are as follows: 

1. As an initial value, set the mode shape matrix equal to the full mode shape matrix of 

the undamaged system. Here the mode shapes from the undamaged structure 

resulting from the modal identification of case 5 were used. Alternatively, one could 

use a model of the structure to set the initial values. 

2. Insert known values from the identified eigenvectors into the eigenvector matrix. 

This step is optional as indicated by the dashed line in the diagram in Fig. 4-7. 

3. Use these mode shapes to determine the stiffnesses of the floors of the structure. 

FIGURE 4-7. Description of the Iterative Technique Used in Case 6. 

Form Ki and compute
corresponding eigenvectors

Identified Partial
Mode Shapes

i=1: Define initial mode shapes

i=
i+

1

Φi
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determine stiffness vector
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4. Form the stiffness matrix, , using the stiffnesses identified in step 3, and compute 

the corresponding eigenvector matrix, . 

5. Set i = i+1, and return to step 2 using the eigenvectors computed in step 4. 

Note that if, in step 2, the identified components in the eigenvector are not used in this

iterative procedure, only the frequencies are required to determine the least squares esti-

mate of the stiffness. Thus, a single sensor to determine the natural frequencies would be

adequate to determine the eigenvectors, eigenvalues, and stiffnesses of the structure. 

In the damaged structure (damage pattern 1), the eigenvalues of the identified model

converge as shown in Fig. 4-9. Based on these plots, a total of 600 iterations were used

to identify the stiffnesses and mode shapes for case 6. The results of this analysis are

provided in Fig. 4-8 and Table 4-7. Note that the correct damage pattern is obtained in

most, but not all, situtations. For instance, the loss in stiffness in damage patterns 2–5

corresponds to the actual location of the damage. In some cases some damage is

observed at other floors, although this is small relative to the loss in stiffness on the floor

with damage. However, in damage pattern 1, the results indicate that the largest loss in

Ki

Φi

FIGURE 4-8. Stiffness Reduction of Each Floor in All Damage Patterns for Case 6. 
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TABLE 4-7. Natural Frequencies and Identified Stiffness Values in Case 6.

Case
Damage 
Pattern

Natural Frequencies (Hz) Stiffness (MN/m)

k1 k2 k3 k4

6
(x-axis)

No damage 8.41 23.88 39.40 54.92 36.01 121.36 87.66 54.28
Pattern 1 6.56 20.77 37.73 54.55 20.58 146.43 57.60 51.12
Pattern 2 5.73 15.11 37.38 47.64 17.63 122.85 21.79 58.21
Pattern 3 8.41 23.88 39.35 54.92 36.06 120.98 88.03 54.04
Pattern 4 8.13 22.97 39.11 53.14 33.43 121.52 73.47 55.38
Pattern 5 8.13 22.97 39.11 53.14 33.43 121.52 73.46 55.38

6
(y-axis)

No damage 8.10 22.23 35.16 45.94 38.63 69.54 66.94 51.97
Pattern 1 4.86 18.17 33.68 45.57 6.00 48.44 59.08 69.77
Pattern 2 4.31 10.24 33.54 36.97 11.10 75.63 8.46 48.71
Pattern 3 7.61 21.34 34.55 45.81 29.16 70.09 67.26 49.78
Pattern 4 7.60 21.28 34.48 45.80 28.72 70.05 67.35 49.53
Pattern 5 7.59 21.27 34.48 45.79 28.58 70.04 67.29 49.54

ω1 ω2 ω3 ω4

FIGURE 4-9. Conversion of Natural Frequencies for Damage Pattern 1.
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stiffness occurs on level 1, but a significant loss in stiffness is observed on other floors

as well. In damage pattern 3 when damage is not present in the x-direction, the results of

the iterative approach also indicate that no loss in stiffness is present in this direction.

Thus this approach provides an indication of the location of the damage, but may indi-

cate that damage occurs in some locations where damage in not present. Thus, once this

method indicates that there is some damage, further data would be required to investi-

gate the actual damage present in the structure. This additional data could be provided

by moving the available sensors around on the structure since the cross-correlation func-

tions do not require all measurements to be made simultaneously and can be obtained

with two sensors at a time (one must always be at the reference channel). 

4.4  Summary

The structural health monitoring approach discussed in this thesis was found to be quite

effective for detecting damage in the benchmark model. Typical errors in the identified

stiffness values were less than 1%. The method was found to be insensitive to noise in

the data, and a reasonable amount of data (90 sec.) was required to implement the tech-

nique. An additional advantage of this technique is that, although it was not necessary

for this example, it may be automated for real-time applications [8]. Additionally it is

not necessary to have all of the frequencies and mode shapes, although a minimal num-

ber is required to obtain a unique least squares solution. 

Further, although a 12DOF model was assumed for the identification model, damage

was correctly identified when the data was generated with the 120DOF model. Thus the

method was relatively insensitive to modeling errors. Small damage, such as that associ-

ated with the loosened beam, was not detected because the stiffness loss was signifi-

cantly smaller than the modeling errors. Future studies will consider this case when the

restriction on the form of the identification model is lifted, reducing the modeling errors

and allowing for more accurate identification of the stiffnesses. However, in case 6



84

(limited sensors are available), the least squares solution of the eigenvalue problem can-

not be used directly. An iterative process was developed for this case. This iterative

method was successful in finding the location of possible damage. In some cases dam-

age was found where no damage existed. However, for this problem, the method did not

miss any damage locations.
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Chapter 5 

Component Transfer Function Technique

The previous chapters of this thesis described a structural health monitoring methodol-

ogy using NeXT and ERA techniques. This chapter discuss the Component Transfer

Function Technique (CTF), a new methodology for structural health monitoring. The

Component Transfer Function technique is a level III methodology based on absolute

acceleration measurements at various locations. To implement the CTF one does not

need a model of the structure to detect damage and its location.  Transfer functions

between the sensors are computed to determine if damage is present in the structure, and

identify the location. However, with this technique a structural model is needed to quan-

tify the damage thought an iterative process where stiffness coefficients are obtained.

In the first part of this chapter the motivation and approach to the Component Transfer

Function Technique is described. The remainder of the chapter focuses on an experi-

ment that was conducted to verify this technique.  This verification was performed in the

Washington University Earthquake Engineering Laboratory using a four story building.

In the last section of this chapter some concluding remarks are presented discussing the

advantages and disadvantages of this technique.

5.1  Motivation for the CTF Technique

Consider a seismically excited two-story structure as shown in Fig. 5-1. A lumped mass

idealization of this structure is governed by the equations of motion 
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. (5-1)

where x1 and x2 are displacements of the floors relative to the ground. For a linear sys-

tem the transfer function is defined as the Laplace transform of the output divided by the

Laplace transform of the input [13]. Taking the Laplace transform of Eq. (5-1) and

determining the transfer function from the ground acceleration to the first and second

floor relative displacements yields 

(5-2)

. (5-3)

Knowing that the absolute acceleration of each floor is given by 

, (5-4)
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FIGURE 5-1. Sample Component Transfer Functions of a Two Story Structure. 
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one can determine the transfer functions from the ground acceleration to the ith floor

absolute accelerations using the relationship 

(5-5)

which yields the transfer functions 

(5-6)

(5-7)

The poles and zeros are defined as the roots of the numerator and denominator of a

transfer function respectively [13]. For light damped structures, poles come in complex

conjugates pairs and correspond to the peaks of the plots shown in Fig. 5-1. Zeros corre-

spond to depressions in the same figure. This model of the structure will have four poles. 

Note that the zeros of the transfer function in Eq. (5-6) are the poles of the top floor of

the structure, . Additionally the transfer function in Eq. (5-7) has no zeros.

Using Eqs. (5-6) and (5-7), the component transfer function (CTF) of the upper floor of

the structure (the transfer function from the first floor absolute acceleration to the second

floor absolute acceleration) is

. (5-8)
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Note that this transfer function has two poles (one peak) and no zeros. The poles of this

system correspond to the natural frequency of the top floor of the structure ( ),

and are also the zeros of the transfer function from the ground acceleration to the first

floor of the structure. This is due to the interaction between the first and second floors of

the structure. This effect is portrayed in the diagram in Fig. 5-1. We can extend this

observation to larger systems of lumped masses and springs.

5.2  Component Transfer Function Technique.

The component transfer function method is based on the observations described in the

previous section. Because the peaks in the CTFs are determined by the mass and stiff-

ness of the corresponding component, each component can be identified sequentially.

The algorithm uses the CTFs to identify the location and severity of the damage. The

steps in this approach are: i) determination of experimental component transfer func-

tions; ii) identification of natural frequencies of component transfer functions; and, iii)

determination of unknown structural stiffnesses. The stiffness of each floor of the struc-

ture is obtained sequentially from the top down. A flow chart describing the approach is

shown in Fig. 5-2.

k2 m2⁄

FIGURE 5-2. Flow Chart for the Component Transfer Function Technique. 
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Note that this approach can be automated to run on-line without user intervention which

is an important requirement of any health monitoring technique. Additionally, an advan-

tage of this technique is that the component transfer functions may be initially deter-

mined and examined for damage. If the peaks in these transfer functions do not shift,

then there is no observable damage in the structure. Additionally, if the peaks in the

CTFs for a number of upper stories do not change, then there is no damage at these lev-

els and one may begin the identification procedure at the first level at which damage is

present. Furthermore, sensors are not required at every floor of a structure. CTFs may be

determined between adjacent sensors to obtain an indication of damage within that por-

tion of the structure. This technique appears to be best suited for structures which can be

modeled as lumped mass systems. Further studies are necessary before applying this

technique to distributed systems.

5.2.1  Determination of Experimental Component Transfer Functions

Determination of the experimental transfer functions can be computed via one of two

expressions [3] given by

 and . (5-9)

where  is the transfer function for a stationary input signal,  and a corre-

sponding output signal, .  denotes the cross spectral density function

between the processes  and . The first of these equations is more commonly used.

However, the second expression is usually applied when there is input noise [3]. The

second approach was found to yield a less noisy transfer function in the experimental

verification. The corresponding discrete frequency transfer function is 

HVU jf( )
SUV f( )
SUU f( )
----------------= HVU jf( )

SVV f( )
SVU f( )
----------------=

HVU jf( ) u t( )

v t( ) SUV f( )

U V
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, (5-10)

were  is the discrete cross spectral density function between the processes 

and .

5.2.2  Identification of Natural Frequencies.

Once the transfer function data is obtained there are numerous techniques available for

identifying the modal parameters. The Eigensystem Realization Algorithm ERA [24]

was used, as described in section 2.3. For the implementation of the ERA the impulse

response function (or free response data) is needed. Here the impulse response function

is calculated from the discrete frequency transfer function in Eq. 5-10 using the inverse

Fourier transform [3]

(5-11)

The corresponding inverse discrete fourier transform is

 n = 0,1,2,..., N-1 (5-12)

5.2.3  Identification of stiffness coefficients

Using the natural frequencies obtained with the ERA, the stiffness of each floor is

obtained using the least square solution of the eigenvalue problem as described in sec-

tion 2.4.1. The stiffness coefficients are obtained sequentially from the top down. The

HVU jkΩ( )
SVV kΩ( )
SVU kΩ( )
----------------------=

SVU kΩ( ) V

U

h t( ) H jf( )ej2πft fd

∞–

∞

∫=

h n( ) 1
N
---- H jkΩ( )e

j2πkn
N

---------------

k 0=

N 1–
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masses are assumed to be known. Once the stiffness of the undamaged structure are

identified, damage can be measured comparing the stiffnesses of the potentially dam-

aged structure to the  stiffnesses of the healthy structure or structural models.

5.3  Experimental Verification

An experiment was performed in the Washington University Structural Control and

Earthquake Engineering Laboratory <http://wusceel.cive.wustl.edu/quake> to verify the

technique. This laboratory houses a uniaxial earthquake simulator. The simulator con-

sists of a  m2 (  ft2) aluminum sliding table mounted on high-precision,

low-friction, linear bearings. 

The subject of the experimental study is the four-story test structure shown in Fig. 5-3.

The structure is 120 cm (49 in) tall and has a total mass of 98 kg (216 lb) which is dis-

tributed uniformly between the floors. The structure is modular such that columns can

1.7 1.7× 5 5×

6 Columns

4 Columns

6 Columns

4 Columns

FIGURE 5-3. Column Distribution (Damaged Case). 

x··g t( )

x··1a t( )

x··2a t( )

x··3a t( )

x··4a t( )
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be replaced or removed to study variations in the structural parameters. To experimen-

tally verify this technique, members were removed from the structure to simulate dam-

age. For the baseline (undamaged) structure six columns were placed on each level of

the structure (see figure 5-3). Damage was induced in the structure by removing the two

supplemental columns on the first and third floors of the structure. This change in the

number of columns correspond to approximately a 33.3% loss in the stiffness between

the undamaged and damaged cases on floors 1 and 3. 

One capacitive accelerometer from PCB Piezotronics was used on each floor. A DSP

Technologies Siglab 20-42 data acquisition system was used to obtain the absolute

acceleration of all floors simultaneously. The acceleration of each floor is measured as

shown in Fig. 5-3. Data is collected using a sample frequency of 128 Hz. Antialiasing

filters were used to prevent aliasing. The data was later resampled to 32 Hz using the

Matlab tool resample.m [29]. 

A 20 Hz band-limited white noise is used to excite the earthquake simulator table. Sets

of 240 seconds of excitation were used to test the structure.

5.3.1  Experimental Results 

Figure 5-4 shows 50 seconds of typical acceleration records for each of the accelerome-

ters in the experiment. The experimental component transfer functions of the test struc-

ture are shown in Fig. 5-5. Notice that the peaks of the transfer function from the third to

the fourth floors are the same for the damaged and the undamaged cases, indicating that

no damage is present on the top floor. However, the component transfer functions dem-

onstrate a shift in the peak between the undamaged and damaged cases. This is evidence

of damage in the 3rd story. 
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Although observation of the shifts in the peaks of the transfer functions may be used for

initial inspection of the structure to identify the presence of damage, it is not appropriate

for quantifying damage or identifying multiple damaged points. Thus, the ERA method

is applied to the frequency response function obtained from the transfer functions. Fig-

ure 5-6 shows a typical frequency response function of the system. Using ERA the

modal frequencies of the component systems are identified. Then, an optimization is

used to determine the stiffness parameters.

The ERA method was applied to identify the natural frequencies of each component

transfer function. The natural frequencies computed from the ERA state matrix are pre-

sented for the undamaged case in Table 5-1, in the rows designated “Experimental.” A

lumped mass model is assumed and the nonlinear optimization is used to estimate the

stiffness in each story. The resulting stiffnesses are provided in Table 5-2 for both

undamaged and damaged cases, and the percent of stiffness loss estimated with this

method. The component transfer function method yields a 33.9% and 32.8 % reduction

the stiffness of the first and third floors, respectively. This correlates well with the

approximately 33.3% loss in stiffness in the experimental structure by removing the
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FIGURE 5-6. Frequency response function
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columns. A small change in the stiffness of the other floors is also observed. This result

is primarily due to modeling errors associated with the assumption of a lumped mass

model. 

Using the identified stiffnesses for the undamaged case, the natural frequencies are

recomputed and are shown in Table 5-1 in the rows designated “Model.” The high corre-

lation between these natural frequencies and those directly from the ERA state matrix

eigenvalues indicates that the nonlinear optimization performs adequately.   

TABLE 5-1. Natural Frequencies of the Experimental and Analytical (Lumped 
Mass) Systems. 

Floor Source 1st Natural 
Freq. (Hz)

2nd Natural 
Freq. (Hz)

3rd Natural 
Freq. (Hz)

4th Natural 
Freq. (Hz)

4th Experimental 7.3248 – – –
4th Model 7.3248 – – –
3rd Experimental 4.3625 11.6907 – –
3rd Model 4.3625 11.6961 – –
2nd Experimental 3.1185 8.9061 12.8700 –
2nd Model 3.1109 8.9061 12.7902 –
1st Experimental 2.3666 7.0220 10.9447 13.3859
1st Model 2.3993 7.0220 10.8488 13.2089

TABLE 5-2. Identified Stiffnesses to Construct Analytical Model. 

1st Story
(kN/m)

2nd Story
(kN/m)

3rd Story
(kN/m)

4th Story
(kN/m)

Undamaged 44.933 46.690 46.971 51.936
Damaged 29.688 48.540 31.570 50.460
Stiffness 

Loss
33.9287% -3.9610% 32.7892% 2.8423%
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5.4  Summary

In this section the component transfer function method was discussed and experimen-

tally verified. This method provides a means of identifying the existence of damage in a

structural system. The method is based on component transfer functions, which are

transfer functions between two sensors on the structural system. One advantage of this

method is that the component transfer functions can be examined to first determine if

damage is present in the structure. Damage identification and quantification is only

needed if damage is indicated. A systematic procedure is applied to identify the stiff-

nesses of the structure based on the component transfer functions. By comparing the

identified stiffnesses to those of the baseline structure the damage is quantified. Note

that this technique appears to be best suited for lumped mass systems. Further studies

are necessary before applying this technique to distributed systems. An experiment is

performed to verify the technique. The loss in stiffness determined in the experiment

matches the actual loss in stiffness of the experimental structure. 
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Chapter 6 

Conclusions and Future Work

This thesis focuses on the development and implementation of two techniques for struc-

tural health monitoring. The first methodology is a three step methodology which uses

the Natural Excitation Technique (NExT) in conjunction with the Eigensystem Realiza-

tion Algorithm (ERA) to obtain the modal parameters. A least squares solution of the

eigenvalue problem is employed to obtain stiffnesses of the structure. The second health

monitoring technique uses component transfer functions to detect damage in the struc-

ture. This chapter will summarize the important contributions of the thesis and provide

some directions for future work. 

The effectiveness of the first technique was examined by applying it to phase I of the

IASC-ASCE structural health monitoring benchmark problem. First, various issues rele-

vant to the implementation of this methodology are investigated using a shear model of

the four story building. The first study considered the accuracy of the methodology

when different frame lengths were used in the calculation of the spectral density func-

tions. This study showed that the methodology was not sensitive to the length of the

frame for the spectral density function calculation. Frame lengths of 1024–4096 were

considered in this study. However, there was a small bias error in the stiffnesses identi-

fied which was attributed to leakage in the spectral density function calculations. These

bias errors were found to be small relative to the damage. Also, the technique was found

to be relatively insensitive to noise in the measurements. Damage levels were accurately

determined even with noise levels of up to 350% RMS of the RMS value of the roof
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acceleration. The effect of modeling errors were also considered by using a 120 DOF

model of the same structure to generate the response data. Some leakage of the loss in

stiffness was observed in the undamaged floors of the structure. Although the location of

the damage was identified correctly, this issue was found to be the most significant

source of error. 

Based on what was learned in these implemention investigations, the technique was

applied to the damage cases delineated in phase I of the IASC-ASCE benchmark prob-

lem. The methodology was used to find damage in the structure for all six cases. The

technique was applied directly in cases 1 through 5. The method performed well, and the

location and extent of damage was accurately determined. However, in case 6 (limited

sensors are available), the least squares solution of the eigenvalue problem cannot be

used directly. An iterative process was developed for this case. This iterative process

was successful in identifying the location of possible damage locations. In some cases

damage was indicated where no damage existed (i.e., there were some false positives in

the results). However, for this problem, the method did not miss any damage locations

(i.e., there were no false negatives).

The second health monitoring strategy developed in this thesis is the component transfer

function technique. This technique allows one to identify damage in the structure by

examining the transfer functions of acceleration records between floors. Observing

changes in the component transfer function provides an indication of the existence and

location of damage in the structure. An iterative approach is described to determine the

precise location and the extent of the damage. The extent of damage is determined by

comparing stiffness values before and after damage. These stiffness values are calcu-

lated using a nonlinear optimization. Experimental verification of this technique was

conducted using a 4 story structure subjected to a ground excitation. Damage was

induced in the structure by removing columns at the first and third floors. The
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component transfer function technique was successfully applied to determine the loca-

tion and extent of the damage.

Future Work

The two structural health monitoring techniques discussed in this thesis were found to be

applicable for the studies herein. The methods have not been investigated for more com-

plex structures and different loading scenarios. The following paragraphs provide some

suggestions for further study of these techniques. 

As discussed in chapter 2 the Natural Excitation Technique is developed for an ideal sta-

tionary white noise excitation. Various researchers have successfully applied this tech-

nique in the case of non-stationary, non-white excitations. Future investigations could be

conducted to determine the efficacy and limitations of the technique in these situations .

This might involve a combination of theoretical and experimental studies. This study

would allow the implementation of the technique for cases such as earthquake excita-

tion. 

The least squares solution of the eigenvalue problem works well when the points of the

mode shapes are identified (full sensors). For the case in which a limited number of sen-

sors are available, an iterative procedure was developed. Further investigation is needed

in this iterative procedure to establish if the method converges in all situations, and to

improve the results obtained. 

Bias errors were observed in the calculations of the natural frequencies with ERA from

the correlation functions obtained with NExT in the studies discussed in chapter 3.

Additional work is necessary to a better understanding of the causes and possible solu-

tions of this bias errors. 
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Experimental verification of the first structural health monitoring technique would be

useful to establish the applicability of the technique. This is planned as part of the phase

II IASC-ASCE structural health monitoring benchmark problem. 

Further investigation is also necessary for the component transfer function technique. As

defined in this thesis this technique requires a measurement of the ground excitation to

identify damage in the first floor. Thus, as formulated, damage in the first floor cannot

be identified when the excitation is due to wind or other forms of forced excitation.

Additional work is necessary to adapt this methodology for this situation. 

The component transfer function technique was found to be very effective for the study

of a structure that behaves as a lumped parameter model. In the case of a distributed sys-

tem, the method is not applicable as yet. Further study is needed before this technique

could be applied to a distributed system. 
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